Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice.

[1]  W. Hahn,et al.  The SIRT1 Deacetylase Suppresses Intestinal Tumorigenesis and Colon Cancer Growth , 2008, PloS one.

[2]  Jin Woo Kim,et al.  EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. , 2008, Cancer research.

[3]  Junjie Chen,et al.  DBC1 is a negative regulator of SIRT1 , 2008, Nature.

[4]  J. Qin,et al.  Negative regulation of the deacetylase SIRT1 by DBC1 , 2008, Nature.

[5]  Lee Baker,et al.  Discovery, In Vivo Activity, and Mechanism of Action of a Small-Molecule p53 Activator , 2007, Cancer cell.

[6]  M. Salto‐Tellez,et al.  Function of the SIRT1 protein deacetylase in cancer. , 2007, Biotechnology journal.

[7]  Jun Wang,et al.  Resveratrol suppresses prostate cancer progression in transgenic mice. , 2007, Carcinogenesis.

[8]  Tan Li,et al.  Resveratrol induces apoptosis, influences IL-6 and exerts immunomodulatory effect on mouse lymphocytic leukemia both in vitro and in vivo. , 2007, International immunopharmacology.

[9]  D. Reinberg,et al.  NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs , 2007, Oncogene.

[10]  E. Verdin,et al.  Sirtuins: critical regulators at the crossroads between cancer and aging , 2007, Oncogene.

[11]  T. Nagy,et al.  SIRT1 is significantly elevated in mouse and human prostate cancer. , 2007, Cancer research.

[12]  William Arbuthnot Sir Lane,et al.  SIRT1 regulates the function of the Nijmegen breakage syndrome protein. , 2007, Molecular cell.

[13]  Y. Kubo,et al.  Strong expression of a longevity-related protein, SIRT1, in Bowen’s disease , 2007, Archives of Dermatological Research.

[14]  G. Park,et al.  SIRT1 promotes DNA repair activity and deacetylation of Ku70 , 2007, Experimental & Molecular Medicine.

[15]  P. Puigserver,et al.  Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α , 2006, Cell.

[16]  Thomas Ried,et al.  Spectral karyotyping analysis of human and mouse chromosomes , 2006, Nature Protocols.

[17]  P. Puigserver,et al.  Resveratrol improves health and survival of mice on a high-calorie diet , 2006, Nature.

[18]  L. Guarente,et al.  Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. , 2006, Genes & development.

[19]  M. Carpenter,et al.  Resveratrol, but not EGCG, in the diet suppresses DMBA-induced mammary cancer in rats , 2006, Journal of carcinogenesis.

[20]  D. Colin,et al.  Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. , 2006, Current drug targets.

[21]  Eivind Hovig,et al.  Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling , 2006, Nucleic acids research.

[22]  S. Baylin,et al.  Tumor Suppressor HIC1 Directly Regulates SIRT1 to Modulate p53-Dependent DNA-Damage Responses , 2005, Cell.

[23]  C. Bradbury,et al.  Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors , 2005, Leukemia.

[24]  Wilhelm Haas,et al.  Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 , 2005, Nature.

[25]  C. Deng,et al.  BRCA1, Histone H2AX Phosphorylation, and Male Meiotic Sex Chromosome Inactivation , 2004, Current Biology.

[26]  C. Deng,et al.  A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Kobayashi,et al.  Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma-H2AX through FHA/BRCT domain. , 2004, Journal of radiation research.

[28]  N. Seeram,et al.  Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. , 2004, Anticancer research.

[29]  L. Guarente,et al.  The Sir2 family of protein deacetylases. , 2004, Annual review of biochemistry.

[30]  Phuong Chung,et al.  Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan , 2003, Nature.

[31]  F. Alt,et al.  Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Ried,et al.  H2AX Haploinsufficiency Modifies Genomic Stability and Tumor Susceptibility , 2003, Cell.

[33]  P. Lansdorp,et al.  The Mammalian SIR2α Protein Has a Role in Embryogenesis and Gametogenesis , 2003, Molecular and Cellular Biology.

[34]  S. Gasser,et al.  The molecular biology of the SIR proteins. , 2001, Gene.

[35]  F. Alt,et al.  DNA double strand break repair and chromosomal translocation: Lessons from animal models , 2001, Oncogene.

[36]  Curtis C. Harris,et al.  Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis , 2001, Nature Genetics.

[37]  C. Deng,et al.  Tumorigenesis as a consequence of genetic instability in Brca1 mutant mice. , 2001, Mutation research.

[38]  V. Yamazaki,et al.  A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage , 2000, Current Biology.

[39]  L. Guarente,et al.  Sir2 links chromatin silencing, metabolism, and aging. , 2000, Genes & development.

[40]  J. Murray,et al.  DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p , 1999, Current Biology.

[41]  L. Guarente,et al.  MEC1-Dependent Redistribution of the Sir3 Silencing Protein from Telomeres to DNA Double-Strand Breaks , 1999, Cell.

[42]  C. Deng,et al.  A targeted disruption of the murine Brca1 gene causes γ-irradiation hypersensitivity and genetic instability , 1998, Oncogene.

[43]  J. Kato,et al.  Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae , 1997, Nature.

[44]  F. Alt,et al.  Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  P. Leder,et al.  Fibroblast Growth Factor Receptor 3 Is a Negative Regulator of Bone Growth , 1996, Cell.

[46]  J. Roder,et al.  Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  L. Donehower,et al.  Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours , 1992, Nature.

[48]  Chang-Su Lim SIRT1: tumor promoter or tumor suppressor? , 2006, Medical hypotheses.

[49]  N. Ahmad,et al.  Prevention of Ultraviolet-B Radiation Damage by Resveratrol in Mouse Skin Is Mediated via Modulation in Survivin¶ , 2005, Photochemistry and photobiology.

[50]  C. Deng,et al.  Generation and analysis of Brca1 conditional knockout mice. , 2004, Methods in molecular biology.

[51]  J. Denu Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. , 2003, Trends in biochemical sciences.

[52]  A. Antoccia,et al.  Chromosomal sensitivity to clastogenic agents and cell cycle perturbations in Nijmegen breakage syndrome lymphoblastoid cell lines. , 1997, International journal of radiation biology.