Combination of simple vision modules for robust real-time motion tracking

In this paper we describe a real time object tracking system consisting of three modules (motion detection, object tracking, robot control), each working with a moderate accuracy, implemented in parallel on a workstation cluster, and therefore operating fast without any specialized hardware. The robustness and quality of the system is achieved by a combination of these vision modules with an additional attention module which recognizes errors during the tracking. For object tracking in image sequences we apply the method of active contour models (snakes) which can be used for contour description and extraction as well. We show how the snake is initialized automatically by the motion detection module, explain the tracking module, and demonstrate the detection of errors during the tracking by the attention module. Experiments show that this approach allows a robust real-time object tracking over long image sequences. Using a formal error measurement presented in this paper it will be shown that the moving object is in the center of the image in 90 percent of all images.

[1]  Steven W. Zucker,et al.  The Organization Of Curve Detection: Coarse Tangent Fields And Fine Spline Coverings , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[2]  Heinrich Niemann Pattern Analysis and Understanding , 1990 .

[3]  Richard Szeliski,et al.  Tracking with Kalman snakes , 1993 .

[4]  Dietrich Paulus,et al.  Objektorientierte und wissensbasierte Bildverarbeitung , 1992, Artificial intelligence - Künstliche Intelligenz.

[5]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Werner Leonhard Einführung in die Regelungstechnik , 1970 .

[7]  Joachim Denzler,et al.  Learning, tracking and recognition of 3D objects , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[8]  Ruzena Bajcsy,et al.  Active and exploratory perception , 1992, CVGIP Image Underst..

[9]  David J. Evans,et al.  Algorithm 512: A Normalized Algorithm for Solution of Positive Definite Symmetric Quindiagonal Systems of Linear Equations [F4] , 1977, TOMS.

[10]  Heinrich Niemann,et al.  Ein Any-Time-Kontrollalgorithmus für die wissensnbasierte Musteranalyse , 1996, DAGM-Symposium.

[11]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[12]  Geoffrey D. Sullivan,et al.  Active Contours using Finite Elements to Control Local Scale , 1992 .

[13]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[14]  Heinrich H. Bülthoff,et al.  Integration of Visual Modules , 1992 .

[15]  Jack Dongarra,et al.  Pvm 3 user's guide and reference manual , 1993 .

[16]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[17]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[19]  Y. Aloimonos What I have learned , 1994 .

[20]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Anup Basu,et al.  Motion Tracking with an Active Camera , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Allen R. Hanson,et al.  The UMASS image understanding architecture , 1987 .

[23]  Volker G. Fischer Parallelverarbeitung in einem semantischen Netzwerk für die wissensbasierte Musteranalyse , 1995, DISKI.