Metric Monocular Localization Using Signed Distance Fields

Metric localization plays a critical role in vision-based navigation. For overcoming the degradation of matching photometry under appearance changes, recent research resorted to introducing geometry constraints of the prior scene structure. In this paper, we present a metric localization method for the monocular camera, using the Signed Distance Field (SDF) as a global map representation. Leveraging the volumetric distance information from SDFs, we aim to relax the assumption of an accurate structure from the local Bundle Adjustment (BA) in previous methods. By tightly coupling the distance factor with temporal visual constraints, our system corrects the odometry drift and jointly optimizes global camera poses with the local structure. We validate the proposed approach on both indoor and outdoor public datasets. Compared to the state-of-the-art methods, it achieves a comparable performance with a minimal sensor configuration.

[1]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[2]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[3]  Yang Yu,et al.  A GPS-aided Omnidirectional Visual-Inertial State Estimator in Ubiquitous Environments , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[4]  Roland Siegwart,et al.  Maplab: An Open Framework for Research in Visual-Inertial Mapping and Localization , 2017, IEEE Robotics and Automation Letters.

[5]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[6]  Yuxiang Sun,et al.  Self-Supervised Drivable Area and Road Anomaly Segmentation Using RGB-D Data For Robotic Wheelchairs , 2019, IEEE Robotics and Automation Letters.

[7]  S.F.F. Gibson,et al.  Using distance maps for accurate surface representation in sampled volumes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[8]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[9]  Michael Bosse,et al.  Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization , 2015, Robotics: Science and Systems.

[10]  Siddhartha S. Srinivasa,et al.  Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Distance Fields , 2015, Robotics: Science and Systems.

[11]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[12]  脇元 修一,et al.  IEEE International Conference on Robotics and Automation (ICRA) におけるフルードパワー技術の研究動向 , 2011 .

[13]  Roland Siegwart,et al.  Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board MAV planning , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[15]  Congcong Liu,et al.  Utilizing Eye Gaze to Enhance the Generalization of Imitation Networks to Unseen Environments , 2019, ArXiv.

[16]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[17]  Yuxiang Sun,et al.  Motion removal for reliable RGB-D SLAM in dynamic environments , 2018, Robotics Auton. Syst..

[18]  Wolfram Burgard,et al.  Monocular camera localization in 3D LiDAR maps , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  Jinyong Jeong,et al.  Stereo Camera Localization in 3D LiDAR Maps , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[20]  Davide Scaramuzza,et al.  Air-ground localization and map augmentation using monocular dense reconstruction , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Ming Liu,et al.  Tightly Coupled 3D Lidar Inertial Odometry and Mapping , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[22]  Ryan M. Eustice,et al.  Visual localization within LIDAR maps for automated urban driving , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Yuxiang Sun,et al.  Improving RGB-D SLAM in dynamic environments: A motion removal approach , 2017, Robotics Auton. Syst..

[25]  Paul Newman,et al.  LAPS - localisation using appearance of prior structure: 6-DoF monocular camera localisation using prior pointclouds , 2012, 2012 IEEE International Conference on Robotics and Automation.

[26]  Daniel Cremers,et al.  Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions , 2013, Robotics: Science and Systems.

[27]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[28]  Paul Newman,et al.  Direct Visual Localisation and Calibration for Road Vehicles in Changing City Environments , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).