Invited discussion paper small-sample distributional properties of nonlinear regression estimators (a geometric approach)
暂无分享,去创建一个
[1] P. Hall. Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .
[2] A. Pázman. On Formulas for the Distribution of Nonlinear L.S. Estimates , 1987 .
[3] T. Brubaker,et al. Nonlinear Parameter Estimation , 1979 .
[4] D. G. Watts,et al. A Quadratic Design Criterion for Precise Estimation in Nonlinear Regression Models , 1985 .
[5] Robert E. Kass,et al. Canonical Parameterizations and Zero Parameter‐Effects Curvature , 1984 .
[6] Andrej Pázman,et al. Geometry of Gaussian nonlinear regression. Parallel curves and confidence intervals , 1982, Kybernetika.
[7] O. E. Barndorff-Nielsen,et al. Infereni on full or partial parameters based on the standardized signed log likelihood ratio , 1986 .
[8] S. Amari,et al. Estimation in the Presence of Infinitely many Nuisance Parameters--Geometry of Estimating Functions , 1988 .
[9] P. Révész,et al. Strong Approximations of the Quantile Process , 1978 .
[10] O. Barndorff-Nielsen. On a formula for the distribution of the maximum likelihood estimator , 1983 .
[11] A. Pázman. Nonlinear least squares - uniqueness versus ambiguity , 1984 .
[12] Rory A. Fisher,et al. Statistical methods and scientific inference. , 1957 .
[13] D. G. Watts,et al. Parameter Transformations for Improved Approximate Confidence Regions in Nonlinear Least Squares , 1981 .
[14] A. Pázman. On information matrices in nonlinear experimental design , 1989 .
[15] Chris Field,et al. Small Sample Asymptotic Expansions for Multivariate $M$-Estimates , 1982 .
[16] Andrej Pázman. Probability distribution of the multivariate nonlinear least squares estimates , 1984, Kybernetika.
[17] P. Vos. Fundamental equations for statistical submanifolds with applications to the Bartlett correction , 1989 .
[18] Shun-ichi Amari,et al. Differential-geometrical methods in statistics , 1985 .
[19] O. E. Barndorff-Nielsen. Likelihood and Observed Geometries , 1986 .
[20] L. Tierney,et al. Approximate methods for assessing influence and sensitivity in Bayesian analysis , 1989 .
[21] Almost exact distributions of estimators I-low dimensional nonlinear regression , 1990 .
[22] O. Barndorff-Nielsen. Parametric statistical models and likelihood , 1988 .
[23] H. Daniels. Saddlepoint approximations for estimating equations , 1983 .
[24] B. Efron. THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .
[25] B. Efron. Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .
[26] A. Messéan,et al. Some simulations results about confidence intervals and bootstrap methods in nonlinear regression , 1990 .
[27] A. V. Ivanon,et al. An asymptotic expansion of the distribution of least squares estimators in the nonlinear regression model , 1983 .
[28] Almost exact distributions of estimators ii- hat nonlinear regression models , 1990 .
[29] Ole E. Barndorff-Nielsen,et al. Approximate Interval Probabilities , 1990 .
[30] Least Squares and Maximum Likelihood Estimation of Functional Relations , 1978 .
[31] D. G. Watts,et al. Relative Curvature Measures of Nonlinearity , 1980 .
[32] Philip Hougaard. Saddlepoint approximations for curved exponential families , 1985 .
[33] A. Pázman,et al. The problem of the unambiguity of phase-shift analysis I , 1969 .
[34] Iain M. Johnstone,et al. Hotelling's Theorem on the Volume of Tubes: Some Illustrations in Simultaneous Inference and Data Analysis , 1990 .
[35] D. Cox. Some problems connected with statistical inference , 1958 .
[36] Andrej Pázman. Distribution of the weighted L.S. estimates in nonlinear models with symmetrical errors , 1988, Kybernetika.
[37] Søren Johansen. Functional Relations, Random Coefficients, and Nonlinear Regression with Application to Kinetic Data , 1984 .
[38] Andrej P´zman. Pivotal variables and confidence regions in flat nonlinear regression models with unknown σ , 1991 .
[39] Nancy Reid,et al. Saddlepoint Methods and Statistical Inference , 1988 .
[40] R. Beran. Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements , 1988 .
[41] S. Zwanzig,et al. Second order asymptotics in nonlinear regression , 1986 .
[42] R. Jennrich. Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .
[43] S. Zwanzig,et al. Testing Hypotheses in Nonlinear Regression for Nonnormal Distributions , 1986 .
[44] Philip Hougaard,et al. Parametrizations of Non‐Linear Models , 1982 .
[45] E. Malinvaud,et al. Statistical Methods of Econometrics. by E. Malinvaud , 1972 .
[46] A note on an estimate for the convergence rate of the LSE in inadequate nonlinear regression models , 1988 .
[47] Shun-ichi Amari,et al. Statistical inference under multiterminal rate restrictions: A differential geometric approach , 1989, IEEE Trans. Inf. Theory.
[48] G. Milliken,et al. Estimable functions in the nonlinear model , 1976 .
[49] R. Kass. The Geometry of Asymptotic Inference , 1989 .
[50] Yasuo Amemiya,et al. Estimation for the Nonlinear Functional Relationship , 1988 .
[51] H. Hotelling. Tubes and Spheres in n-Spaces, and a Class of Statistical Problems , 1939 .
[52] L. Tierney,et al. Approximate marginal densities of nonlinear functions , 1989 .
[53] A. Gallant,et al. Nonlinear Statistical Models , 1988 .
[54] P. Hougaard. The Appropriateness of the Asymptotic Distribution in a Nonlinear Regression Model in Relation to Curvature , 1985 .
[55] J. Witmer,et al. Nonlinear Regression Modeling. , 1984 .
[56] S. Amari. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .
[57] O. Barndorff-Nielsen,et al. Approximating exponential models , 1989 .