Invited discussion paper small-sample distributional properties of nonlinear regression estimators (a geometric approach)

The paper is mainly a survey of the topic how to approximate the probability density of the parameter estimator in a nonlinear regression model. A short presentation of the geometry of the model and a heuristic discussion of the model and a heuristic discussion of the “irregularities” of the estimates are given. In the model with Gaussian errors we present the asymptotic normal approximation, the approximationby the second order Edgeworth expansion, a conditional density of BARNDORFF-NIELSEN, and mainly the approximation called “flat” or “saddlepoint” approximation, which will be shown to have several interesting properties. Further, we present the possibility of improving the approximation in some models, the extension of the approximation to some cases of nongaussian errors, and besides the maximum likelihood estimator we consider also the weighted least-squares estimator, with the weights not depending on the error concariance matrix.

[1]  P. Hall Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .

[2]  A. Pázman On Formulas for the Distribution of Nonlinear L.S. Estimates , 1987 .

[3]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[4]  D. G. Watts,et al.  A Quadratic Design Criterion for Precise Estimation in Nonlinear Regression Models , 1985 .

[5]  Robert E. Kass,et al.  Canonical Parameterizations and Zero Parameter‐Effects Curvature , 1984 .

[6]  Andrej Pázman,et al.  Geometry of Gaussian nonlinear regression. Parallel curves and confidence intervals , 1982, Kybernetika.

[7]  O. E. Barndorff-Nielsen,et al.  Infereni on full or partial parameters based on the standardized signed log likelihood ratio , 1986 .

[8]  S. Amari,et al.  Estimation in the Presence of Infinitely many Nuisance Parameters--Geometry of Estimating Functions , 1988 .

[9]  P. Révész,et al.  Strong Approximations of the Quantile Process , 1978 .

[10]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[11]  A. Pázman Nonlinear least squares - uniqueness versus ambiguity , 1984 .

[12]  Rory A. Fisher,et al.  Statistical methods and scientific inference. , 1957 .

[13]  D. G. Watts,et al.  Parameter Transformations for Improved Approximate Confidence Regions in Nonlinear Least Squares , 1981 .

[14]  A. Pázman On information matrices in nonlinear experimental design , 1989 .

[15]  Chris Field,et al.  Small Sample Asymptotic Expansions for Multivariate $M$-Estimates , 1982 .

[16]  Andrej Pázman Probability distribution of the multivariate nonlinear least squares estimates , 1984, Kybernetika.

[17]  P. Vos Fundamental equations for statistical submanifolds with applications to the Bartlett correction , 1989 .

[18]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[19]  O. E. Barndorff-Nielsen Likelihood and Observed Geometries , 1986 .

[20]  L. Tierney,et al.  Approximate methods for assessing influence and sensitivity in Bayesian analysis , 1989 .

[21]  Almost exact distributions of estimators I-low dimensional nonlinear regression , 1990 .

[22]  O. Barndorff-Nielsen Parametric statistical models and likelihood , 1988 .

[23]  H. Daniels Saddlepoint approximations for estimating equations , 1983 .

[24]  B. Efron THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .

[25]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[26]  A. Messéan,et al.  Some simulations results about confidence intervals and bootstrap methods in nonlinear regression , 1990 .

[27]  A. V. Ivanon,et al.  An asymptotic expansion of the distribution of least squares estimators in the nonlinear regression model , 1983 .

[28]  Almost exact distributions of estimators ii- hat nonlinear regression models , 1990 .

[29]  Ole E. Barndorff-Nielsen,et al.  Approximate Interval Probabilities , 1990 .

[30]  Least Squares and Maximum Likelihood Estimation of Functional Relations , 1978 .

[31]  D. G. Watts,et al.  Relative Curvature Measures of Nonlinearity , 1980 .

[32]  Philip Hougaard Saddlepoint approximations for curved exponential families , 1985 .

[33]  A. Pázman,et al.  The problem of the unambiguity of phase-shift analysis I , 1969 .

[34]  Iain M. Johnstone,et al.  Hotelling's Theorem on the Volume of Tubes: Some Illustrations in Simultaneous Inference and Data Analysis , 1990 .

[35]  D. Cox Some problems connected with statistical inference , 1958 .

[36]  Andrej Pázman Distribution of the weighted L.S. estimates in nonlinear models with symmetrical errors , 1988, Kybernetika.

[37]  Søren Johansen Functional Relations, Random Coefficients, and Nonlinear Regression with Application to Kinetic Data , 1984 .

[38]  Andrej P´zman Pivotal variables and confidence regions in flat nonlinear regression models with unknown σ , 1991 .

[39]  Nancy Reid,et al.  Saddlepoint Methods and Statistical Inference , 1988 .

[40]  R. Beran Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements , 1988 .

[41]  S. Zwanzig,et al.  Second order asymptotics in nonlinear regression , 1986 .

[42]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[43]  S. Zwanzig,et al.  Testing Hypotheses in Nonlinear Regression for Nonnormal Distributions , 1986 .

[44]  Philip Hougaard,et al.  Parametrizations of Non‐Linear Models , 1982 .

[45]  E. Malinvaud,et al.  Statistical Methods of Econometrics. by E. Malinvaud , 1972 .

[46]  A note on an estimate for the convergence rate of the LSE in inadequate nonlinear regression models , 1988 .

[47]  Shun-ichi Amari,et al.  Statistical inference under multiterminal rate restrictions: A differential geometric approach , 1989, IEEE Trans. Inf. Theory.

[48]  G. Milliken,et al.  Estimable functions in the nonlinear model , 1976 .

[49]  R. Kass The Geometry of Asymptotic Inference , 1989 .

[50]  Yasuo Amemiya,et al.  Estimation for the Nonlinear Functional Relationship , 1988 .

[51]  H. Hotelling Tubes and Spheres in n-Spaces, and a Class of Statistical Problems , 1939 .

[52]  L. Tierney,et al.  Approximate marginal densities of nonlinear functions , 1989 .

[53]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[54]  P. Hougaard The Appropriateness of the Asymptotic Distribution in a Nonlinear Regression Model in Relation to Curvature , 1985 .

[55]  J. Witmer,et al.  Nonlinear Regression Modeling. , 1984 .

[56]  S. Amari Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .

[57]  O. Barndorff-Nielsen,et al.  Approximating exponential models , 1989 .