Pre-stimulus pattern of activity in the fusiform face area predicts face percepts during binocular rivalry

[1]  John-Dylan Haynes,et al.  Decoding and predicting intentions , 2011, Annals of the New York Academy of Sciences.

[2]  Matthew T. Kaufman,et al.  Cortical Preparatory Activity: Representation of Movement or First Cog in a Dynamical Machine? , 2010, Neuron.

[3]  Po-Jang Hsieh,et al.  “Brain‐reading” of perceived colors reveals a feature mixing mechanism underlying perceptual filling‐in in cortical area V1 , 2010, Human brain mapping.

[4]  Bruno B Averbeck,et al.  Rapid Sequences of Population Activity Patterns Dynamically Encode Task-Critical Spatial Information in Parietal Cortex , 2010, The Journal of Neuroscience.

[5]  Hans P. Op de Beeck,et al.  Probing the mysterious underpinnings of multi-voxel fMRI analyses , 2010, NeuroImage.

[6]  Brian J. Scholl,et al.  Attentive tracking of objects vs. substances , 2010 .

[7]  N. Kanwisher,et al.  Recognition alters the spatial pattern of FMRI activation in early retinotopic cortex. , 2010, Journal of neurophysiology.

[8]  P. Tse,et al.  Microsaccade Rate Varies with Subjective Visibility during Motion-Induced Blindness , 2009, PloS one.

[9]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.

[10]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[11]  Dov Sagi,et al.  Opposite Neural Signatures of Motion-Induced Blindness in Human Dorsal and Ventral Visual Cortex , 2008, The Journal of Neuroscience.

[12]  Andrew B. Leber,et al.  Neural predictors of moment-to-moment fluctuations in cognitive flexibility , 2008, Proceedings of the National Academy of Sciences.

[13]  Joel Pearson,et al.  Sensory memory for ambiguous vision , 2008, Trends in Cognitive Sciences.

[14]  David J. Freedman,et al.  Dynamic population coding of category information in inferior temporal and prefrontal cortex. , 2008, Journal of neurophysiology.

[15]  Andreas Kleinschmidt,et al.  Spontaneous local variations in ongoing neural activity bias perceptual decisions , 2008, Proceedings of the National Academy of Sciences.

[16]  Frank Tong,et al.  The Functional Impact of Mental Imagery on Conscious Perception , 2008, Current Biology.

[17]  Leslie G. Ungerleider,et al.  The neural systems that mediate human perceptual decision making , 2008, Nature Reviews Neuroscience.

[18]  M. Brass,et al.  Unconscious determinants of free decisions in the human brain , 2008, Nature Neuroscience.

[19]  Geraint Rees,et al.  A Neural Basis for Percept Stabilization in Binocular Rivalry , 2008, Journal of Cognitive Neuroscience.

[20]  Timo Krings,et al.  Cerebral processing of spontaneous reversals of the rotating Necker cube , 2007, Neuroreport.

[21]  R. Blake,et al.  Neural bases of binocular rivalry , 2006, Trends in Cognitive Sciences.

[22]  Gideon Paul Caplovitz,et al.  Bistable illusory rebound motion: Event-related functional magnetic resonance imaging of perceptual states and switches , 2006, NeuroImage.

[23]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[24]  M. Chun,et al.  Linking Implicit and Explicit Memory: Common Encoding Factors and Shared Representations , 2006, Neuron.

[25]  M. Lankheet,et al.  Unraveling adaptation and mutual inhibition in perceptual rivalry. , 2006, Journal of vision.

[26]  Alan W Freeman,et al.  Multistage model for binocular rivalry. , 2005, Journal of neurophysiology.

[27]  Sabine Kastner,et al.  Neural correlates of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature Neuroscience.

[28]  R. Deichmann,et al.  Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature.

[29]  Frank Tong,et al.  Filling-in of visual phantoms in the human brain , 2005, Nature Neuroscience.

[30]  Georgios A. Keliris,et al.  A binocular rivalry study of motion perception in the human brain , 2005, Vision Research.

[31]  G. Rees,et al.  Predicting the Stream of Consciousness from Activity in Human Visual Cortex , 2005, Current Biology.

[32]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[33]  Jude F. Mitchell,et al.  Object-based attention determines dominance in binocular rivalry , 2004, Nature.

[34]  Adam P. Morris,et al.  Amygdala Responses to Fearful and Happy Facial Expressions under Conditions of Binocular Suppression , 2004, The Journal of Neuroscience.

[35]  Hugh R Wilson,et al.  Computational evidence for a rivalry hierarchy in vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[37]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[38]  Timothy J. Andrews,et al.  Activity in the Fusiform Gyrus Predicts Conscious Perception of Rubin's Vase–Face Illusion , 2002, NeuroImage.

[39]  David A. Leopold,et al.  Stable perception of visually ambiguous patterns , 2002, Nature Neuroscience.

[40]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[41]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[42]  Stephen A. Engel,et al.  Interocular rivalry revealed in the human cortical blind-spot representation , 2001, Nature.

[43]  Frank Tong,et al.  Competing Theories of Binocular Rivalry: A Possible Resolution , 2001 .

[44]  D. Heeger,et al.  Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry , 2000, Nature Neuroscience.

[45]  R. Blake,et al.  Grouping visual features during binocular rivalry , 1999, Vision Research.

[46]  N. Logothetis Single units and conscious vision. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[47]  K. Nakayama,et al.  Binocular Rivalry and Visual Awareness in Human Extrastriate Cortex , 1998, Neuron.

[48]  Peter Dayan,et al.  A Hierarchical Model of Binocular Rivalry , 1998, Neural Computation.

[49]  G. Rees,et al.  Neural correlates of perceptual rivalry in the human brain. , 1998, Science.

[50]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[51]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[52]  David A. Leopold,et al.  What is rivalling during binocular rivalry? , 1996, Nature.

[53]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[54]  T. Mueller A physiological model of binocular rivalry , 1990, Visual Neuroscience.

[55]  S. R. Lehky An Astable Multivibrator Model of Binocular Rivalry , 1988, Perception.

[56]  R. P. O'Shea Chronometric analysis supports fusion rather than suppression theory of binocular vision , 1987, Vision Research.

[57]  J M Wolfe,et al.  Influence of Spatial Frequency, Luminance, and Duration on Binocular Rivalry and Abnormal Fusion of Briefly Presented Dichoptic Stimuli , 1983, Perception.

[58]  D. Levi,et al.  Color vision is altered during the suppression phase of binocular rivalry. , 1982, Science.

[59]  H. Fukuda Magnitude of Suppression of Binocular Rivalry within the Invisible Pattern , 1981, Perceptual and motor skills.

[60]  B Crassini,et al.  The Sensitivity of Binocular Rivalry Suppression to Changes in Orientation Assessed by Reaction-Time and Forced-Choice Techniques , 1981, Perception.

[61]  R. Blake,et al.  What is Suppressed during Binocular Rivalry? , 1980, Perception.

[62]  W. Dörrenhaus Musterspezifischer visueller Wettstreit , 1975, Naturwissenschaften.

[63]  R. Fox,et al.  Independence between binocular rivalry suppression duration and magnitude of suppression. , 1972, Journal of experimental psychology.

[64]  R. Fox,et al.  Increment detection thresholds during binocular rivalry suppression , 1970 .

[65]  R. Fox,et al.  Detection of motion during binocular rivalry suppression. , 1968, Journal of experimental psychology.

[66]  David Alais,et al.  Strength and coherence of binocular rivalry depends on shared stimulus complexity , 2007, Vision Research.

[67]  Randolph Blake,et al.  Traveling waves of activity in primary visual cortex during binocular rivalry , 2005, Nature Neuroscience.

[68]  Carson C. Chow,et al.  A Spiking Neuron Model for Binocular Rivalry , 2004, Journal of Computational Neuroscience.

[69]  Noboru Sugie,et al.  Neural models of brightness perception and retinal rivalry in binocular vision , 2004, Biological Cybernetics.

[70]  N. Logothetis,et al.  Visual competition , 2002, Nature Reviews Neuroscience.

[71]  R. Blake,et al.  Do recognizable figures enjoy an advantage in binocular rivalry? , 1992, Journal of experimental psychology. Human perception and performance.

[72]  R. Blake A neural theory of binocular rivalry. , 1989, Psychological review.