On normal and subnormal q-ary codes

The authors extend to the q-ary case the notions of a normal code, a subnormal code, and the amalgamated direct sum construction, in order to investigate problems related to the covering radius of codes. For example, the authors prove that every nonbinary nontrivial perfect code is absubnormal. They also include some linear-programming lower bounds on ternary codes with covering radius 2 or 3. >