An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients
暂无分享,去创建一个
C. Guidorzi | D. Götz | E. Bozzo | S. Mereghetti | K. Hurley | P. Ubertini | E. Berger | G. Terreran | M. R. Drout | R. Margutti | C. Ferrigno | R. Chornock | E. Kuulkers | P. K. Blanchard | K. Paterson | D. D. Frederiks | D. S. Svinkin | V. Savchenko | L. Ducci | N. Bartel | D. Milisavljevic | I. Chilingarian | E. Berger | B. Metzger | A. MacFadyen | R. Chornock | M. Nicholl | B. Margalit | R. Margutti | W. Fong | P. Blanchard | K. Alexander | M. Drout | T. Eftekhari | D. Milisavljevic | R. Cartier | K. Hurley | C. Guidorzi | D. Coppejans | G. Terreran | K. Paterson | D. Brethauer | A. Hajela | D. Gotz | S. Mereghetti | M. Bietenholz | C. Ferrigno | P. Laurent | E. Bozzo | P. Ubertini | E. Kuulkers | D. Frederiks | N. Bartel | B. Grefenstette | J. Steiner | D. Patnaude | D. Götz | N. Roth | M. Nicholl | A. MacFadyen | K. D. Alexander | J. F. Steiner | P. Laurent | W. Fong | D. L. Coppejans | T. Eftekhari | B. D. Metzger | A. Hajela | V. Savchenko | D. Svinkin | T. Laskar | J. Banovetz | T. Laskar | I. Vurm | E. Coughlin | A. Kozlova | B. W. Grefenstette | R. Cartier | G. Migliori | G. Migliori | L. Ducci | D. Patnaude | I. Vurm | N. Roth | B. Margalit | M. Bietenholz | D. Brethauer | I. V. Chilingarian | J. Banovetz | E. R. Coughlin | A. V. Kozlova | R. Margutti | S. Mereghetti | A. Macfadyen | K. Hurley | Nathaniel Roth
[1] E. Quataert,et al. Weak Shock Propagation with Accretion. I. Self-similar Solutions and Application to Failed Supernovae , 2018, The Astrophysical Journal.
[2] B. Metzger,et al. The Multi-Dimensional Structure of Radiative Shocks: Suppressed Thermal X-rays and Relativistic Ion Acceleration , 2018, Monthly Notices of the Royal Astronomical Society.
[3] W. M. Wood-Vasey,et al. Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.
[4] N. E. Sommer,et al. Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.
[5] D. Porquet,et al. An Extreme, Blueshifted Iron-Line Profile in the Narrow-Line Seyfert 1 PG 1402+261: An Edge-on Accretion Disk or Highly Ionized Absorption? , 2004, astro-ph/0408403.
[6] E. Berger,et al. RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. II. THE RELATIVISTIC JET SHUTS OFF AND A TRANSITION TO FORWARD SHOCK X-RAY/RADIO EMISSION , 2012, 1212.1173.
[7] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[8] M. Barlow,et al. The Radio and Infrared Spectrum of Early-type Stars Undergoing Mass Loss , 1975 .
[9] A. Moorwood,et al. Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .
[10] R. Kotak,et al. SN 2008S: An electron-capture SN from a super-AGB progenitor? , 2009, 0903.1286.
[11] J. Guillochon,et al. A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT? , 2014, 1410.6014.
[12] Anthony L. Piro,et al. Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars , 2013, 1311.1519.
[13] R. Chevalier,et al. Circumstellar Emission from Type Ib and Ic Supernovae , 2006, astro-ph/0607196.
[14] Michael A. Nowak,et al. CIAO: Chandra's data analysis system , 2006, SPIE Astronomical Telescopes + Instrumentation.
[15] M. Irwin,et al. The UKIRT Hemisphere Survey : definition and J-band data release. , 2017, 1707.09975.
[16] Sergio Campana,et al. When GRB afterglows get softer, hard components come into play , 2008 .
[17] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[18] Joern Wilms,et al. THE REFLECTION COMPONENT FROM CYGNUS X-1 IN THE SOFT STATE MEASURED BY NuSTAR AND SUZAKU , 2013, 1310.3830.
[19] P. Dokkum. Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.
[20] Andrew Becker,et al. HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .
[21] B. Metzger,et al. Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae , 2018, 1802.07750.
[22] Derek Ives. The UKIRT Wide Field Camera , 2007 .
[23] J. Hakkila,et al. Long-Lag, Wide-Pulse Gamma-Ray Bursts , 2005 .
[24] R. Chornock,et al. The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.
[25] W. B. Burton,et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.
[26] S. Woosley,et al. VERY LOW ENERGY SUPERNOVAE FROM NEUTRINO MASS LOSS , 2013, 1303.5055.
[27] D. Fox,et al. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.
[28] R. Narayan,et al. Powerful radiative jets in supercritical accretion discs around non-spinning black holes , 2015, 1503.00654.
[29] R. Chevalier,et al. SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.
[30] R. Kotak,et al. THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.
[31] E. Quataert,et al. Fast Luminous Blue Transients from Newborn Black Holes , 2015, 1504.05582.
[32] N. Langer,et al. Ultra-stripped supernovae: progenitors and fate , 2015, 1505.00270.
[33] R. Kotak,et al. Massive stars exploding in a He-rich circumstellar medium – VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST , 2015, 1502.04949.
[34] D. Walton,et al. Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources , 2017, 1705.10297.
[35] B. Metzger,et al. MAGNETAR-DRIVEN SHOCK BREAKOUT AND DOUBLE-PEAKED SUPERNOVA LIGHT CURVES , 2015, 1507.03645.
[36] D. Kasen,et al. Rapidly fading supernovae from massive star explosions , 2013, 1309.4088.
[37] P. Giommi,et al. Unveiling the origin of X-ray flares in gamma-ray bursts , 2010, 1004.0901.
[38] S. Gezari,et al. THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.
[39] P. Brown,et al. The shock break-out of GRB 060218/SN 2006aj , 2006, astro-ph/0603279.
[40] K. Hotokezaka,et al. Rapidly Rising Optical Transients from the Birth of Binary Neutron Stars , 2017, 1704.06276.
[41] E. Mazets,et al. PANCHROMATIC OBSERVATIONS OF SN 2011dh POINT TO A COMPACT PROGENITOR STAR , 2011, 1107.1876.
[42] D. Berk,et al. Ultraviolet Light Curves of Supernovae with Swift Uvot , 2008, 0803.1265.
[43] D. Kasen,et al. THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS , 2015, 1510.08454.
[44] S. B. Cenko,et al. THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.
[45] William H. Lee,et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? , 2018, Monthly Notices of the Royal Astronomical Society.
[46] SNaX: A Database of Supernova X-Ray Light Curves. , 2017, The Astronomical journal.
[47] D. Kasen,et al. THERMONUCLEAR.Ia SUPERNOVAE FROM HELIUM SHELL DETONATIONS: EXPLOSION MODELS AND OBSERVABLES , 2010, 1002.2258.
[48] R. Perna,et al. Ultra-long Gamma-Ray Bursts from the Collapse of Blue Supergiant Stars: An End-to-end Simulation , 2018, 1803.04983.
[49] E. O. Ofek,et al. A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.
[50] D. Kasen,et al. What Sets the Line Profiles in Tidal Disruption Events? , 2017, 1707.02993.
[51] W. Arnett. Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .
[52] E. Nakar,et al. Type II supernovae Early Light Curves , 2016, 1610.05323.
[53] J. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .
[54] R. Margutti,et al. Lag-luminosity relation in γ-ray burst X-ray flares: A direct link to the prompt emission , 2010, 1004.1568.
[55] P. Brown,et al. THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek , 2013, 1306.2337.
[56] T. Sakamoto,et al. JET BREAKS AND ENERGETICS OF Swift GAMMA-RAY BURST X-RAY AFTERGLOWS , 2008, 0812.4780.
[57] V. Urpin. On disk accretion , 1983 .
[58] D. Palmer,et al. BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .
[59] Martin J. Rees,et al. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.
[60] Andrew Szentgyorgyi,et al. Data Reduction Pipeline for the MMT and Magellan Infrared Spectrograph , 2012, 1503.07504.
[61] B. Ramsey,et al. IBIS: The Imager on-board INTEGRAL , 2003 .
[62] M. Hamuy. Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.
[63] modern style in AASTeX 61 AT 2018 COW : A LUMINOUS MILLIMETER TRANSIENT , 2018 .
[64] E. Quataert,et al. Swift 1644+57: The Longest Gamma-ray Burst? , 2011, 1105.3209.
[65] Nathan Smith,et al. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls , 2017, 1712.00514.
[66] K. Ioka,et al. OPENING ANGLES OF COLLAPSAR JETS , 2013, 1304.0163.
[67] Andreas Kelz,et al. Ground-based instrumentation for astronomy , 2004 .
[68] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[69] W. Lei,et al. GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION , 2013, 1302.4878.
[70] S. Baliunas,et al. A Prescription for period analysis of unevenly sampled time series , 1986 .
[71] E. Pian,et al. THE SIGNATURE OF THE CENTRAL ENGINE IN THE WEAKEST RELATIVISTIC EXPLOSIONS: GRB 100316D , 2013, 1308.1687.
[72] D. Palmer. A FAST CHI-SQUARED TECHNIQUE FOR PERIOD SEARCH OF IRREGULARLY SAMPLED DATA , 2009, 0901.1913.
[73] D. Fox,et al. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.
[74] J. Fabbri,et al. PHOTOMETRIC AND SPECTROSCOPIC EVOLUTION OF THE IIP SN 2007it TO DAY 944 , 2011, 1102.2431.
[75] K. Nomoto,et al. The Crab Nebula's progenitor , 1982, Nature.
[76] J. Cannizzo,et al. The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .
[77] M. Shibata,et al. Neutrino-driven explosions of ultra-stripped Type Ic supernovae generating binary neutron stars , 2015, 1506.08827.
[78] T. Chonis,et al. SETTING UBVRI PHOTOMETRIC ZERO-POINTS USING SLOAN DIGITAL SKY SURVEY ugriz MAGNITUDES , 2007, 0710.5801.
[79] Nathaniel R. Butler,et al. PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy , 2011, 1103.0779.
[80] K. Maeda,et al. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae , 2016, 1612.03911.
[81] K. Maguire,et al. SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.
[82] A. Pastorello,et al. A low-energy core-collapse supernova without a hydrogen envelope , 2009, Nature.
[83] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .
[84] R. Narayan,et al. Three-dimensional simulations of supercritical black hole accretion discs - luminosities, photon trapping and variability , 2015, 1509.03168.
[85] P. Giommi,et al. The Swift X-Ray Telescope , 1999 .
[86] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[87] W. M. Wood-Vasey,et al. SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA , 2009, 0902.2794.
[88] L. Piro,et al. THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES , 2013, 1306.1699.
[89] D. Nakauchi,et al. BLUE SUPERGIANT MODEL FOR ULTRA-LONG GAMMA-RAY BURST WITH SUPERLUMINOUS-SUPERNOVA-LIKE BUMP , 2013, 1307.5061.
[90] E. Berger,et al. DISCOVERY OF AN OUTFLOW FROM RADIO OBSERVATIONS OF THE TIDAL DISRUPTION EVENT ASASSN-14li , 2015, 1510.01226.
[91] R. Keppens,et al. Gamma-ray burst afterglows from transrelativistic blast wave simulations , 2009, 0909.2446.
[92] E. Berger,et al. X-Rays from the Location of the Double-humped Transient ASASSN-15lh , 2016, The Astrophysical journal.
[93] Doug Tody,et al. The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.
[94] N. Lomb. Least-squares frequency analysis of unequally spaced data , 1976 .
[95] B. Metzger,et al. Shock-powered light curves of luminous red novae as signatures of pre-dynamical mass loss in stellar mergers , 2017, 1705.03895.
[96] E. Berger,et al. One Thousand Days of SN2015bn: HST Imaging Shows a Light Curve Flattening Consistent with Magnetar Predictions , 2018, The Astrophysical Journal.
[97] E. Quataert,et al. Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.
[98] R. Fern'andez,et al. Mass ejection in failed supernovae: variation with stellar progenitor , 2017, 1710.01735.
[99] S. R. Kulkarni,et al. The Radio and X-Ray-Luminous Type Ibc Supernova 2003L , 2005 .
[100] Ronnie Killough,et al. The Swift Ultra-Violet/Optical Telescope , 2001 .
[101] Lars Bildsten,et al. SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.
[102] P. Kumar,et al. Off-Axis Afterglow Emission from Jetted Gamma-Ray Bursts , 2002 .
[103] R. Barkhouser,et al. Design Overview and Performance of the WIYN High Resolution Infrared Camera (WHIRC) , 2010 .
[104] E. Berger,et al. RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. I. JET ENERGETICS AND THE PRISTINE PARSEC-SCALE ENVIRONMENT OF A SUPERMASSIVE BLACK HOLE , 2011, 1112.1697.
[105] M. Phillips,et al. A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE , 2013, 1306.0038.
[106] P. Vreeswijk,et al. iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.
[107] O. Graur,et al. THE SPECTRAL SN-GRB CONNECTION: SYSTEMATIC SPECTRAL COMPARISONS BETWEEN TYPE Ic SUPERNOVAE AND BROAD-LINED TYPE Ic SUPERNOVAE WITH AND WITHOUT GAMMA-RAY BURSTS , 2015, 1509.07124.
[108] L. Sironi,et al. Relativistic Shocks: Particle Acceleration and Magnetization , 2015, 1506.02034.
[109] Bing Zhang,et al. Black Hole Hyperaccretion Inflow–Outflow Model. I. Long and Ultra-long Gamma-Ray Bursts , 2017, 1710.00141.
[110] N. Gehrels,et al. The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves , 2012, 1203.1059.
[111] A. Pastorello,et al. SN 2004aw: confirming diversity of Type Ic supernovae , 2006 .
[112] Chris L. Fryer,et al. X-RAY SPECTRAL COMPONENTS OBSERVED IN THE AFTERGLOW OF GRB 130925A , 2014, 1402.6755.
[113] S. Dye,et al. The WFCAM Science Archive , 2006, 0711.3593.
[114] S. Smartt,et al. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.
[115] P. Brown,et al. X-ray Swift observations of SN 2018cow , 2018, Monthly Notices of the Royal Astronomical Society: Letters.
[116] P. Astier,et al. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP , 2015, 1511.00704.
[117] U. N. Dame,et al. A fast-evolving luminous transient discovered by K2/Kepler , 2018, 1804.04641.
[118] Marcos J. Montes,et al. Radio emission from supernovae and gamma-ray bursters , 2002 .
[119] A. Fabian,et al. The role of the reflection fraction in constraining black hole spin , 2014, 1408.2347.
[120] E. O. Ofek,et al. SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.
[121] A. Loeb,et al. Supernova shock breakout through a wind , 2011, 1101.1489.
[122] Nathan Smith. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014 .
[123] David Polishook,et al. SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.
[124] B. Gendre,et al. THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT? , 2012, 1212.2392.
[125] E. Dwek. The infrared echo of a type II supernova with a circumstellar dust shell: applications to SN 1979c and SN 1980k , 1983 .
[126] Wei Zheng,et al. SN 2015U: A Rapidly Evolving and Luminous Type Ibn Supernova , 2016, 1603.04866.
[127] A. J. van der Horst,et al. GAMMA-RAY BURST AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON HYDRODYNAMICS SIMULATIONS , 2011, 1110.5089.
[128] Zhi-Yun Li,et al. Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.
[129] Robert H. Anderson,et al. The Goodman spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.
[130] R. Margutti,et al. Anomalous X-ray emission in GRB 060904B: A Nickel line? , 2007, 0712.1412.
[131] N. Langer,et al. ULTRA-STRIPPED TYPE Ic SUPERNOVAE FROM CLOSE BINARY EVOLUTION , 2013, 1310.6356.
[132] Julian Krolik,et al. NON-LTE MODELS AND THEORETICAL SPECTRA OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. III. INTEGRATED SPECTRA FOR HYDROGEN-HELIUM DISKS , 2000 .
[133] Re'em Sari,et al. The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows , 2001 .
[134] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[135] Anil K. Pradhan,et al. Electron-Ion Recombination Rate Coefficients, Photoionization Cross Sections, and Ionization Fractions for Astrophysically Abundant Elements. II. Oxygen Ions , 1999 .
[136] A. Spitkovsky. Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators , 2006, astro-ph/0603147.
[137] Christina Freytag,et al. Radiative Processes In Astrophysics , 2016 .
[138] J. Bloom,et al. An Unusually Fast-Evolving Supernova , 2009, Science.
[139] D. J. Walton,et al. A rapidly spinning supermassive black hole at the centre of NGC 1365 , 2013, Nature.
[140] Bing Zhang,et al. Variabilities of Gamma-Ray Burst Afterglows: Long-acting Engine, Anisotropic Jet, or Many Fluctuating Regions? , 2004 .
[141] J. Blondin,et al. Pulsar Wind Bubble Blowout from a Supernova , 2017, 1707.07021.
[142] E. Waxman,et al. X-rays, γ-rays and neutrinos from collisionless shocks in supernova wind breakouts , 2011, Proceedings of the International Astronomical Union.
[143] E. Nakar,et al. SUPERNOVAE WITH TWO PEAKS IN THE OPTICAL LIGHT CURVE AND THE SIGNATURE OF PROGENITORS WITH LOW-MASS EXTENDED ENVELOPES , 2014, 1401.7013.
[144] J. Stone,et al. A GLOBAL THREE-DIMENSIONAL RADIATION MAGNETO-HYDRODYNAMIC SIMULATION OF SUPER-EDDINGTON ACCRETION DISKS , 2014, 1410.0678.
[145] G. Di Cocco,et al. The INTEGRAL mission , 2003 .
[146] R. Shen,et al. Tidal Disruption of a Main-sequence Star by an Intermediate-mass Black Hole: A Bright Decade , 2018, The Astrophysical Journal.
[147] P. Mazzali,et al. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars , 2016, 1612.02882.
[148] S. Campana,et al. A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations , 2011, 1112.4470.
[149] S. Gezari,et al. RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1 , 2014, 1405.3668.
[150] A. Tchekhovskoy,et al. Magnetic flux of progenitor stars sets gamma-ray burst luminosity and variability , 2014, 1409.4414.
[151] R. Kotak,et al. A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR , 2012, 1203.1933.
[152] R. Narayan,et al. A Simple Comptonization Model , 2008, 0810.1758.
[153] A. Piro. TAKING THE “UN” OUT OF “UNNOVAE” , 2013, 1304.1539.
[154] D. Kasen,et al. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.
[155] A. Gal-yam. Luminous Supernovae , 2012, Science.
[156] E. S. Phinney,et al. MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .
[157] N. Yasuda,et al. RAPIDLY RISING TRANSIENTS FROM THE SUBARU HYPER SUPRIME-CAM TRANSIENT SURVEY , 2016, 1601.03261.
[158] B. Metzger,et al. Kilonovae , 2016, Living Reviews in Relativity.
[159] B. Metzger,et al. The GRB–SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures , 2017, 1705.01103.
[160] M. Rouger,et al. ISGRI: The INTEGRAL soft gamma-ray imager , 2003, astro-ph/0310362.
[161] S. B. Cenko,et al. DISCOVERY OF SN 2009nz ASSOCIATED WITH GRB 091127 , 2010, 1005.4961.
[162] R. Starling,et al. Calibration of X-ray absorption in our Galaxy , 2013, 1303.0843.
[163] S. Ginzburg,et al. LIGHT CURVES FROM SUPERNOVA SHOCK BREAKOUT THROUGH AN EXTENDED WIND , 2013, 1308.6434.
[164] John A. Nousek,et al. ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .
[165] Kingston,et al. A RADIO-SELECTED SAMPLE OF GAMMA-RAY BURST AFTERGLOWS , 2011, 1110.4124.
[166] R. Margutti,et al. Gamma-ray burst long lasting X-ray flaring activity , 2010, 1004.3831.
[167] E. Berger,et al. Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. III. Late-time Jet Energetics and a Deviation from Equipartition , 2017, 1710.07289.
[168] B. Metzger,et al. Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.
[169] Bing Zhang,et al. BRIGHT “MERGER-NOVA” FROM THE REMNANT OF A NEUTRON STAR BINARY MERGER: A SIGNATURE OF A NEWLY BORN, MASSIVE, MILLISECOND MAGNETAR , 2013, 1308.0876.
[170] B. Metzger,et al. Time dependent models of accretion disks with nuclear burning following the tidal disruption of a white dwarf by a neutron star , 2016, 1603.07334.
[171] A. Pastorello,et al. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.
[172] Paul Martini,et al. MMT and Magellan Infrared Spectrograph , 2012 .
[173] Alison L. Coil,et al. The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.
[174] P. Brown,et al. Swift spectra of AT2018cow: a white dwarf tidal disruption event? , 2018, Monthly Notices of the Royal Astronomical Society.
[175] B. J. Shappee,et al. The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient , 2018, The Astrophysical Journal.
[176] D. Walton,et al. Evidence for Pulsar-like Emission Components in the Broadband ULX Sample , 2018, 1803.04424.
[177] Richard Walters,et al. RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE “.Ia” EXPLOSION , 2010, 1009.0960.
[178] E. Berger,et al. The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT , 2017, 1706.00825.
[179] A. MacFadyen,et al. GAMMA-RAY BURSTS ARE OBSERVED OFF-AXIS , 2014, 1405.5516.
[180] D. Nadyozhin. Some secondary indications of gravitational collapse , 1980 .
[181] R. Chevalier. Synchrotron Self-Absorption in Radio Supernovae , 1998 .
[182] Eran O. Ofek,et al. SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE? , 2011, 1107.5307.
[183] K. Nomoto,et al. Electron-capture supernovae exploding within their progenitor wind , 2014, 1407.4563.
[184] Alan A. Wells,et al. The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.