An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients

We present the first extensive radio to γ-ray observations of a fast-rising blue optical transient, AT 2018cow, over its first ~100 days. AT 2018cow rose over a few days to a peak luminosity L_(pk) ~ 4 × 10^(44) erg s^(−1), exceeding that of superluminous supernovae (SNe), before declining as L ∝ t^(−2). Initial spectra at δt ≾ 15 days were mostly featureless and indicated large expansion velocities v ~ 0.1c and temperatures reaching T ~ 3 × 10^4 K. Later spectra revealed a persistent optically thick photosphere and the emergence of H and He emission features with v ~ 4000 km s^(−1) with no evidence for ejecta cooling. Our broadband monitoring revealed a hard X-ray spectral component at E ≥ 10 keV, in addition to luminous and highly variable soft X-rays, with properties unprecedented among astronomical transients. An abrupt change in the X-ray decay rate and variability appears to accompany the change in optical spectral properties. AT 2018cow showed bright radio emission consistent with the interaction of a blast wave with v_(sh) ~ 0.1c with a dense environment (M ~ 10^(-3) – 10^(-4) M⊙ Yr^(-1) for v w = 1000 km s−1). While these properties exclude ^(56)Ni-powered transients, our multiwavelength analysis instead indicates that AT 2018cow harbored a "central engine," either a compact object (magnetar or black hole) or an embedded internal shock produced by interaction with a compact, dense circumstellar medium. The engine released ~10^(50)–10^(51.5) erg over ~10^3–10^5 s and resides within low-mass fast-moving material with equatorial–polar density asymmetry (M_(ej,fast) ≾ 0.3 M ☉). Successful SNe from low-mass H-rich stars (like electron-capture SNe) or failed explosions from blue supergiants satisfy these constraints. Intermediate-mass black holes are disfavored by the large environmental density probed by the radio observations.

[1]  E. Quataert,et al.  Weak Shock Propagation with Accretion. I. Self-similar Solutions and Application to Failed Supernovae , 2018, The Astrophysical Journal.

[2]  B. Metzger,et al.  The Multi-Dimensional Structure of Radiative Shocks: Suppressed Thermal X-rays and Relativistic Ion Acceleration , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  W. M. Wood-Vasey,et al.  Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.

[4]  N. E. Sommer,et al.  Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  D. Porquet,et al.  An Extreme, Blueshifted Iron-Line Profile in the Narrow-Line Seyfert 1 PG 1402+261: An Edge-on Accretion Disk or Highly Ionized Absorption? , 2004, astro-ph/0408403.

[6]  E. Berger,et al.  RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. II. THE RELATIVISTIC JET SHUTS OFF AND A TRANSITION TO FORWARD SHOCK X-RAY/RADIO EMISSION , 2012, 1212.1173.

[7]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[8]  M. Barlow,et al.  The Radio and Infrared Spectrum of Early-type Stars Undergoing Mass Loss , 1975 .

[9]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[10]  R. Kotak,et al.  SN 2008S: An electron-capture SN from a super-AGB progenitor? , 2009, 0903.1286.

[11]  J. Guillochon,et al.  A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT? , 2014, 1410.6014.

[12]  Anthony L. Piro,et al.  Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars , 2013, 1311.1519.

[13]  R. Chevalier,et al.  Circumstellar Emission from Type Ib and Ic Supernovae , 2006, astro-ph/0607196.

[14]  Michael A. Nowak,et al.  CIAO: Chandra's data analysis system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[15]  M. Irwin,et al.  The UKIRT Hemisphere Survey : definition and J-band data release. , 2017, 1707.09975.

[16]  Sergio Campana,et al.  When GRB afterglows get softer, hard components come into play , 2008 .

[17]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[18]  Joern Wilms,et al.  THE REFLECTION COMPONENT FROM CYGNUS X-1 IN THE SOFT STATE MEASURED BY NuSTAR AND SUZAKU , 2013, 1310.3830.

[19]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[20]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[21]  B. Metzger,et al.  Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae , 2018, 1802.07750.

[22]  Derek Ives The UKIRT Wide Field Camera , 2007 .

[23]  J. Hakkila,et al.  Long-Lag, Wide-Pulse Gamma-Ray Bursts , 2005 .

[24]  R. Chornock,et al.  The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.

[25]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[26]  S. Woosley,et al.  VERY LOW ENERGY SUPERNOVAE FROM NEUTRINO MASS LOSS , 2013, 1303.5055.

[27]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[28]  R. Narayan,et al.  Powerful radiative jets in supercritical accretion discs around non-spinning black holes , 2015, 1503.00654.

[29]  R. Chevalier,et al.  SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.

[30]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[31]  E. Quataert,et al.  Fast Luminous Blue Transients from Newborn Black Holes , 2015, 1504.05582.

[32]  N. Langer,et al.  Ultra-stripped supernovae: progenitors and fate , 2015, 1505.00270.

[33]  R. Kotak,et al.  Massive stars exploding in a He-rich circumstellar medium – VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST , 2015, 1502.04949.

[34]  D. Walton,et al.  Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources , 2017, 1705.10297.

[35]  B. Metzger,et al.  MAGNETAR-DRIVEN SHOCK BREAKOUT AND DOUBLE-PEAKED SUPERNOVA LIGHT CURVES , 2015, 1507.03645.

[36]  D. Kasen,et al.  Rapidly fading supernovae from massive star explosions , 2013, 1309.4088.

[37]  P. Giommi,et al.  Unveiling the origin of X-ray flares in gamma-ray bursts , 2010, 1004.0901.

[38]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[39]  P. Brown,et al.  The shock break-out of GRB 060218/SN 2006aj , 2006, astro-ph/0603279.

[40]  K. Hotokezaka,et al.  Rapidly Rising Optical Transients from the Birth of Binary Neutron Stars , 2017, 1704.06276.

[41]  E. Mazets,et al.  PANCHROMATIC OBSERVATIONS OF SN 2011dh POINT TO A COMPACT PROGENITOR STAR , 2011, 1107.1876.

[42]  D. Berk,et al.  Ultraviolet Light Curves of Supernovae with Swift Uvot , 2008, 0803.1265.

[43]  D. Kasen,et al.  THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS , 2015, 1510.08454.

[44]  S. B. Cenko,et al.  THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.

[45]  William H. Lee,et al.  The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  SNaX: A Database of Supernova X-Ray Light Curves. , 2017, The Astronomical journal.

[47]  D. Kasen,et al.  THERMONUCLEAR.Ia SUPERNOVAE FROM HELIUM SHELL DETONATIONS: EXPLOSION MODELS AND OBSERVABLES , 2010, 1002.2258.

[48]  R. Perna,et al.  Ultra-long Gamma-Ray Bursts from the Collapse of Blue Supergiant Stars: An End-to-end Simulation , 2018, 1803.04983.

[49]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[50]  D. Kasen,et al.  What Sets the Line Profiles in Tidal Disruption Events? , 2017, 1707.02993.

[51]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[52]  E. Nakar,et al.  Type II supernovae Early Light Curves , 2016, 1610.05323.

[53]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[54]  R. Margutti,et al.  Lag-luminosity relation in γ-ray burst X-ray flares: A direct link to the prompt emission , 2010, 1004.1568.

[55]  P. Brown,et al.  THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek , 2013, 1306.2337.

[56]  T. Sakamoto,et al.  JET BREAKS AND ENERGETICS OF Swift GAMMA-RAY BURST X-RAY AFTERGLOWS , 2008, 0812.4780.

[57]  V. Urpin On disk accretion , 1983 .

[58]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[59]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[60]  Andrew Szentgyorgyi,et al.  Data Reduction Pipeline for the MMT and Magellan Infrared Spectrograph , 2012, 1503.07504.

[61]  B. Ramsey,et al.  IBIS: The Imager on-board INTEGRAL , 2003 .

[62]  M. Hamuy Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.

[63]  modern style in AASTeX 61 AT 2018 COW : A LUMINOUS MILLIMETER TRANSIENT , 2018 .

[64]  E. Quataert,et al.  Swift 1644+57: The Longest Gamma-ray Burst? , 2011, 1105.3209.

[65]  Nathan Smith,et al.  Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls , 2017, 1712.00514.

[66]  K. Ioka,et al.  OPENING ANGLES OF COLLAPSAR JETS , 2013, 1304.0163.

[67]  Andreas Kelz,et al.  Ground-based instrumentation for astronomy , 2004 .

[68]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[69]  W. Lei,et al.  GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION , 2013, 1302.4878.

[70]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[71]  E. Pian,et al.  THE SIGNATURE OF THE CENTRAL ENGINE IN THE WEAKEST RELATIVISTIC EXPLOSIONS: GRB 100316D , 2013, 1308.1687.

[72]  D. Palmer A FAST CHI-SQUARED TECHNIQUE FOR PERIOD SEARCH OF IRREGULARLY SAMPLED DATA , 2009, 0901.1913.

[73]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.

[74]  J. Fabbri,et al.  PHOTOMETRIC AND SPECTROSCOPIC EVOLUTION OF THE IIP SN 2007it TO DAY 944 , 2011, 1102.2431.

[75]  K. Nomoto,et al.  The Crab Nebula's progenitor , 1982, Nature.

[76]  J. Cannizzo,et al.  The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .

[77]  M. Shibata,et al.  Neutrino-driven explosions of ultra-stripped Type Ic supernovae generating binary neutron stars , 2015, 1506.08827.

[78]  T. Chonis,et al.  SETTING UBVRI PHOTOMETRIC ZERO-POINTS USING SLOAN DIGITAL SKY SURVEY ugriz MAGNITUDES , 2007, 0710.5801.

[79]  Nathaniel R. Butler,et al.  PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy , 2011, 1103.0779.

[80]  K. Maeda,et al.  Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae , 2016, 1612.03911.

[81]  K. Maguire,et al.  SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.

[82]  A. Pastorello,et al.  A low-energy core-collapse supernova without a hydrogen envelope , 2009, Nature.

[83]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[84]  R. Narayan,et al.  Three-dimensional simulations of supercritical black hole accretion discs - luminosities, photon trapping and variability , 2015, 1509.03168.

[85]  P. Giommi,et al.  The Swift X-Ray Telescope , 1999 .

[86]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[87]  W. M. Wood-Vasey,et al.  SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA , 2009, 0902.2794.

[88]  L. Piro,et al.  THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES , 2013, 1306.1699.

[89]  D. Nakauchi,et al.  BLUE SUPERGIANT MODEL FOR ULTRA-LONG GAMMA-RAY BURST WITH SUPERLUMINOUS-SUPERNOVA-LIKE BUMP , 2013, 1307.5061.

[90]  E. Berger,et al.  DISCOVERY OF AN OUTFLOW FROM RADIO OBSERVATIONS OF THE TIDAL DISRUPTION EVENT ASASSN-14li , 2015, 1510.01226.

[91]  R. Keppens,et al.  Gamma-ray burst afterglows from transrelativistic blast wave simulations , 2009, 0909.2446.

[92]  E. Berger,et al.  X-Rays from the Location of the Double-humped Transient ASASSN-15lh , 2016, The Astrophysical journal.

[93]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[94]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[95]  B. Metzger,et al.  Shock-powered light curves of luminous red novae as signatures of pre-dynamical mass loss in stellar mergers , 2017, 1705.03895.

[96]  E. Berger,et al.  One Thousand Days of SN2015bn: HST Imaging Shows a Light Curve Flattening Consistent with Magnetar Predictions , 2018, The Astrophysical Journal.

[97]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[98]  R. Fern'andez,et al.  Mass ejection in failed supernovae: variation with stellar progenitor , 2017, 1710.01735.

[99]  S. R. Kulkarni,et al.  The Radio and X-Ray-Luminous Type Ibc Supernova 2003L , 2005 .

[100]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[101]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[102]  P. Kumar,et al.  Off-Axis Afterglow Emission from Jetted Gamma-Ray Bursts , 2002 .

[103]  R. Barkhouser,et al.  Design Overview and Performance of the WIYN High Resolution Infrared Camera (WHIRC) , 2010 .

[104]  E. Berger,et al.  RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. I. JET ENERGETICS AND THE PRISTINE PARSEC-SCALE ENVIRONMENT OF A SUPERMASSIVE BLACK HOLE , 2011, 1112.1697.

[105]  M. Phillips,et al.  A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE , 2013, 1306.0038.

[106]  P. Vreeswijk,et al.  iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.

[107]  O. Graur,et al.  THE SPECTRAL SN-GRB CONNECTION: SYSTEMATIC SPECTRAL COMPARISONS BETWEEN TYPE Ic SUPERNOVAE AND BROAD-LINED TYPE Ic SUPERNOVAE WITH AND WITHOUT GAMMA-RAY BURSTS , 2015, 1509.07124.

[108]  L. Sironi,et al.  Relativistic Shocks: Particle Acceleration and Magnetization , 2015, 1506.02034.

[109]  Bing Zhang,et al.  Black Hole Hyperaccretion Inflow–Outflow Model. I. Long and Ultra-long Gamma-Ray Bursts , 2017, 1710.00141.

[110]  N. Gehrels,et al.  The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves , 2012, 1203.1059.

[111]  A. Pastorello,et al.  SN 2004aw: confirming diversity of Type Ic supernovae , 2006 .

[112]  Chris L. Fryer,et al.  X-RAY SPECTRAL COMPONENTS OBSERVED IN THE AFTERGLOW OF GRB 130925A , 2014, 1402.6755.

[113]  S. Dye,et al.  The WFCAM Science Archive , 2006, 0711.3593.

[114]  S. Smartt,et al.  PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.

[115]  P. Brown,et al.  X-ray Swift observations of SN 2018cow , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[116]  P. Astier,et al.  RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP , 2015, 1511.00704.

[117]  U. N. Dame,et al.  A fast-evolving luminous transient discovered by K2/Kepler , 2018, 1804.04641.

[118]  Marcos J. Montes,et al.  Radio emission from supernovae and gamma-ray bursters , 2002 .

[119]  A. Fabian,et al.  The role of the reflection fraction in constraining black hole spin , 2014, 1408.2347.

[120]  E. O. Ofek,et al.  SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.

[121]  A. Loeb,et al.  Supernova shock breakout through a wind , 2011, 1101.1489.

[122]  Nathan Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014 .

[123]  David Polishook,et al.  SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.

[124]  B. Gendre,et al.  THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT? , 2012, 1212.2392.

[125]  E. Dwek The infrared echo of a type II supernova with a circumstellar dust shell: applications to SN 1979c and SN 1980k , 1983 .

[126]  Wei Zheng,et al.  SN 2015U: A Rapidly Evolving and Luminous Type Ibn Supernova , 2016, 1603.04866.

[127]  A. J. van der Horst,et al.  GAMMA-RAY BURST AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON HYDRODYNAMICS SIMULATIONS , 2011, 1110.5089.

[128]  Zhi-Yun Li,et al.  Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.

[129]  Robert H. Anderson,et al.  The Goodman spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[130]  R. Margutti,et al.  Anomalous X-ray emission in GRB 060904B: A Nickel line? , 2007, 0712.1412.

[131]  N. Langer,et al.  ULTRA-STRIPPED TYPE Ic SUPERNOVAE FROM CLOSE BINARY EVOLUTION , 2013, 1310.6356.

[132]  Julian Krolik,et al.  NON-LTE MODELS AND THEORETICAL SPECTRA OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. III. INTEGRATED SPECTRA FOR HYDROGEN-HELIUM DISKS , 2000 .

[133]  Re'em Sari,et al.  The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows , 2001 .

[134]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[135]  Anil K. Pradhan,et al.  Electron-Ion Recombination Rate Coefficients, Photoionization Cross Sections, and Ionization Fractions for Astrophysically Abundant Elements. II. Oxygen Ions , 1999 .

[136]  A. Spitkovsky Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators , 2006, astro-ph/0603147.

[137]  Christina Freytag,et al.  Radiative Processes In Astrophysics , 2016 .

[138]  J. Bloom,et al.  An Unusually Fast-Evolving Supernova , 2009, Science.

[139]  D. J. Walton,et al.  A rapidly spinning supermassive black hole at the centre of NGC 1365 , 2013, Nature.

[140]  Bing Zhang,et al.  Variabilities of Gamma-Ray Burst Afterglows: Long-acting Engine, Anisotropic Jet, or Many Fluctuating Regions? , 2004 .

[141]  J. Blondin,et al.  Pulsar Wind Bubble Blowout from a Supernova , 2017, 1707.07021.

[142]  E. Waxman,et al.  X-rays, γ-rays and neutrinos from collisionless shocks in supernova wind breakouts , 2011, Proceedings of the International Astronomical Union.

[143]  E. Nakar,et al.  SUPERNOVAE WITH TWO PEAKS IN THE OPTICAL LIGHT CURVE AND THE SIGNATURE OF PROGENITORS WITH LOW-MASS EXTENDED ENVELOPES , 2014, 1401.7013.

[144]  J. Stone,et al.  A GLOBAL THREE-DIMENSIONAL RADIATION MAGNETO-HYDRODYNAMIC SIMULATION OF SUPER-EDDINGTON ACCRETION DISKS , 2014, 1410.0678.

[145]  G. Di Cocco,et al.  The INTEGRAL mission , 2003 .

[146]  R. Shen,et al.  Tidal Disruption of a Main-sequence Star by an Intermediate-mass Black Hole: A Bright Decade , 2018, The Astrophysical Journal.

[147]  P. Mazzali,et al.  Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars , 2016, 1612.02882.

[148]  S. Campana,et al.  A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations , 2011, 1112.4470.

[149]  S. Gezari,et al.  RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1 , 2014, 1405.3668.

[150]  A. Tchekhovskoy,et al.  Magnetic flux of progenitor stars sets gamma-ray burst luminosity and variability , 2014, 1409.4414.

[151]  R. Kotak,et al.  A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR , 2012, 1203.1933.

[152]  R. Narayan,et al.  A Simple Comptonization Model , 2008, 0810.1758.

[153]  A. Piro TAKING THE “UN” OUT OF “UNNOVAE” , 2013, 1304.1539.

[154]  D. Kasen,et al.  SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.

[155]  A. Gal-yam Luminous Supernovae , 2012, Science.

[156]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .

[157]  N. Yasuda,et al.  RAPIDLY RISING TRANSIENTS FROM THE SUBARU HYPER SUPRIME-CAM TRANSIENT SURVEY , 2016, 1601.03261.

[158]  B. Metzger,et al.  Kilonovae , 2016, Living Reviews in Relativity.

[159]  B. Metzger,et al.  The GRB–SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures , 2017, 1705.01103.

[160]  M. Rouger,et al.  ISGRI: The INTEGRAL soft gamma-ray imager , 2003, astro-ph/0310362.

[161]  S. B. Cenko,et al.  DISCOVERY OF SN 2009nz ASSOCIATED WITH GRB 091127 , 2010, 1005.4961.

[162]  R. Starling,et al.  Calibration of X-ray absorption in our Galaxy , 2013, 1303.0843.

[163]  S. Ginzburg,et al.  LIGHT CURVES FROM SUPERNOVA SHOCK BREAKOUT THROUGH AN EXTENDED WIND , 2013, 1308.6434.

[164]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[165]  Kingston,et al.  A RADIO-SELECTED SAMPLE OF GAMMA-RAY BURST AFTERGLOWS , 2011, 1110.4124.

[166]  R. Margutti,et al.  Gamma-ray burst long lasting X-ray flaring activity , 2010, 1004.3831.

[167]  E. Berger,et al.  Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. III. Late-time Jet Energetics and a Deviation from Equipartition , 2017, 1710.07289.

[168]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[169]  Bing Zhang,et al.  BRIGHT “MERGER-NOVA” FROM THE REMNANT OF A NEUTRON STAR BINARY MERGER: A SIGNATURE OF A NEWLY BORN, MASSIVE, MILLISECOND MAGNETAR , 2013, 1308.0876.

[170]  B. Metzger,et al.  Time dependent models of accretion disks with nuclear burning following the tidal disruption of a white dwarf by a neutron star , 2016, 1603.07334.

[171]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[172]  Paul Martini,et al.  MMT and Magellan Infrared Spectrograph , 2012 .

[173]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[174]  P. Brown,et al.  Swift spectra of AT2018cow: a white dwarf tidal disruption event? , 2018, Monthly Notices of the Royal Astronomical Society.

[175]  B. J. Shappee,et al.  The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient , 2018, The Astrophysical Journal.

[176]  D. Walton,et al.  Evidence for Pulsar-like Emission Components in the Broadband ULX Sample , 2018, 1803.04424.

[177]  Richard Walters,et al.  RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE “.Ia” EXPLOSION , 2010, 1009.0960.

[178]  E. Berger,et al.  The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT , 2017, 1706.00825.

[179]  A. MacFadyen,et al.  GAMMA-RAY BURSTS ARE OBSERVED OFF-AXIS , 2014, 1405.5516.

[180]  D. Nadyozhin Some secondary indications of gravitational collapse , 1980 .

[181]  R. Chevalier Synchrotron Self-Absorption in Radio Supernovae , 1998 .

[182]  Eran O. Ofek,et al.  SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE? , 2011, 1107.5307.

[183]  K. Nomoto,et al.  Electron-capture supernovae exploding within their progenitor wind , 2014, 1407.4563.

[184]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.