Anthropic Shadow: Observation Selection Effects and Human Extinction Risks

We describe a significant practical consequence of taking anthropic biases into account in deriving predictions for rare stochastic catastrophic events. The risks associated with catastrophes such as asteroidal/cometary impacts, supervolcanic episodes, and explosions of supernovae/gamma-ray bursts are based on their observed frequencies. As a result, the frequencies of catastrophes that destroy or are otherwise incompatible with the existence of observers are systematically underestimated. We describe the consequences of this anthropic bias for estimation of catastrophic risks, and suggest some directions for future work.

[1]  H. Roscoe The Risk of Large Volcanic Eruptions and the Impact of this Risk on Future Ozone Depletion , 2001 .

[2]  J. Wheeler,et al.  Astrophysical and Astrobiological Implications of Gamma-Ray Burst Properties , 1999, astro-ph/9912564.

[3]  A Guide to the End of the World: Everything You Never Wanted to Know , 2002 .

[4]  B. Vukotić,et al.  NEOCATASTROPHISM AND THE MILKY WAY ASTROBIOLOGICAL LANDSCAPE , 2008 .

[5]  An Estimate of the Age Distribution of Terrestrial Planets in the Universe: Quantifying Metallicity as a Selection Effect , 2000, astro-ph/0012399.

[6]  M. Cirkovic,et al.  Astrobiological Phase Transition: Towards Resolution of Fermi’s Paradox , 2008, Origins of Life and Evolution of Biospheres.

[7]  Kunihiko Kaneko,et al.  CORRIGENDUM: Phase transitions in two-dimensional stochastic cellular automata , 1986 .

[8]  Rafaela Hillerbrand,et al.  Probing the improbable: methodological challenges for risks with low probabilities and high stakes , 2008, 0810.5515.

[9]  M. Ćirković Evolutionary catastrophes and the Goldilocks problem , 2007, International Journal of Astrobiology.

[10]  J. Barrow,et al.  The Anthropic Cosmological Principle , 1987 .

[11]  N. Bostrom Anthropic Bias: Observation Selection Effects in Science and Philosophy , 2002 .

[12]  David A. Kring,et al.  Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga , 2002 .

[13]  N. Bostrom,et al.  Global Catastrophic Risks , 2008 .

[14]  Michael J. Benton,et al.  When Life Nearly Died: The Greatest Mass Extinction of All Time , 2003 .

[15]  G. Woo The Mathematics of Natural Catastrophes , 1999 .

[16]  S. Ambrose Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. , 1998, Journal of human evolution.

[17]  M. Baillie The case for significant numbers of extraterrestrial impacts through the late Holocene , 2007 .

[18]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[19]  R. White Earth's biggest ‘whodunnit’: unravelling the clues in the case of the end–Permian mass extinction , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  THE THREAT TO LIFE FROM ETA CARINAE AND GAMMA-RAY BURSTS , 2001, astro-ph/0110162.

[21]  M. Ruderman Possible Consequences of Nearby Supernova Explosions for Atmospheric Ozone and Terrestrial Life , 1974, Science.

[22]  Resource Letter AP‐1: The anthropic principle , 1991 .

[23]  P. Hut,et al.  How stable is our vacuum? , 1983, Nature.

[24]  Nick Bostrom,et al.  Astrophysics: Is a doomsday catastrophe likely? , 2005, Nature.

[25]  L. Smolin Scientific alternatives to the anthropic principle , 2004, hep-th/0407213.

[26]  Terrestrial implications of cosmological gamma-ray burst models , 1995, astro-ph/9501019.

[27]  Adrian Kent,et al.  A Critical Look at Risk Assessments for Global Catastrophes , 2000, Risk analysis : an official publication of the Society for Risk Analysis.

[28]  W. Napier Evidence for cometary bombardment episodes , 2006 .

[29]  M. Sher,et al.  Cosmic-ray induced vacuum decay in the standard model , 1988 .

[30]  G. Brakenridge Terrestrial paleoenvironmental effects of a late quaternary-age supernova , 1981 .

[31]  M. Bailey,et al.  Capture of Halley-type comets from the near-parabolic flux , 1998 .

[32]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[33]  Comments on "Will relativistic heavy-ion colliders destroy our planet?" , 1999, hep-ph/9910471.

[34]  S. Gould Full House: The Spread of Excellence from Plato to Darwin , 1996 .

[35]  F. Wilczek,et al.  Is our vacuum metastable? , 1982, Nature.

[36]  P. Schultz,et al.  The Quaternary impact record from the Pampas, Argentina , 2004 .

[37]  G. Ellis,et al.  Universe or Multiverse , 2009 .

[38]  M. Rampino Supereruptions as a threat to civilizations on earth-like planets , 2002 .

[39]  S. Coleman,et al.  Gravitational Effects on and of Vacuum Decay , 1980 .

[40]  An Astrophysical Explanation for the Great Silence , 1999, astro-ph/9901322.

[41]  M. Rees Our Final Hour , 2003 .

[42]  Daniel W. McShea,et al.  Possible largest-scale trends in organismal evolution : Eight live hypotheses , 1998 .

[43]  Stephen Self,et al.  Volcanic winter and accelerated glaciation following the Toba super-eruption , 1992, Nature.

[44]  The Frozen Earth: Binary Scattering Events and the Fate of the Solar System , 2000 .

[45]  Julio A. Fernández,et al.  The population of faint Jupiter family comets near the Earth , 2006 .

[46]  C. Laird,et al.  Evidence for a stratigraphic record of supernovae in polar ice , 2006 .

[47]  G. Hunt Possible climatic and biological impact of nearby supernovae , 1978, Nature.

[48]  Richard P. Binzel,et al.  Bias-corrected population, size distribution, and impact hazard for the near-Earth objects , 2004 .

[49]  Dirk Schulze-Makuch,et al.  Life in the Universe , 2008 .

[50]  D. Erwin,et al.  The tempo of mass extinction and recovery: the end-Permian example. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Stothers Giant solar flares in Antarctic ice , 1980, Nature.

[52]  Michael J Benton,et al.  Recovery from the most profound mass extinction of all time , 2008, Proceedings of the Royal Society B: Biological Sciences.

[53]  Photometric observations of 9 Near-Earth Objects ? , 2001, astro-ph/0106017.

[54]  Review of speculative “disaster scenarios” at RHIC , 1999, hep-ph/9910333.

[55]  N. Wickramasinghe,et al.  Extreme albedo comets and the impact hazard , 2004 .

[56]  Stephen Jay Gould,et al.  The paradox of the first tier: an agenda for paleobiology , 1985, Paleobiology.

[57]  M. Valtonen,et al.  Periodic variation of Oort Cloud flux and cometary impacts on the Earth and Jupiter , 2001 .