Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging.

In this communication, a conceptually new approach to the delivery of magnetic resonance imaging (MRI) contrast agents is presented. Our experiments demonstrate the feasibility of using silica-embedded iron oxide nanoparticles as contrast agents in magnetic resonance imaging, where a reduction in signal intensity (increased contrast) in the T2-weighted images is observed. The surface of these particles can be chemically modified by attachment of polyethylene glycol molecules, which are found to reduce nonspecific protein binding. The design of the nanoparticle is universal and flexible and allows for facile addition or interchange of its active components (i.e., MRI contrast agents and targeting moiety) with photodynamic dyes.