Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer– couple hypothesis from membrane mechanics

Red-cell shape is encoded in the mechanical properties of the membrane. The plasma membrane contributes bending rigidity; the protein-based membrane skeleton contributes stretch and shear elasticity. When both effects are included, membrane mechanics can reproduce in detail the full stomatocyte–discocyte–echinocyte sequence by variation of a single parameter related to the bilayer couple originally introduced by Sheetz and Singer [Sheetz, M. P. & Singer, S. J. (1974) Proc. Natl. Acad. Sci. USA 71, 4457–4461].

[1]  M. Gedde,et al.  Resolution of the paradox of red cell shape changes in low and high pH. , 1999, Biochimica et biophysica acta.

[2]  O. Linderkamp,et al.  Deformability and Geometry of Neonatal Erythrocytes with Irregular Shapes , 1999, Pediatric Research.

[3]  R. Mukhopadhyay,et al.  Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing. , 2001, Biophysical journal.

[4]  J. Gimsa,et al.  Do band 3 protein conformational changes mediate shape changes of human erythrocytes? , 1995, Molecular membrane biology.

[5]  E. Ben-Jacob,et al.  Atomic force pulling: probing the local elasticity of the cell membrane , 2000, European Biophysics Journal.

[6]  Y. Fung,et al.  High-resolution data on the geometry of red blood cells. , 1981, Biorheology.

[7]  Wilfred D. Stein,et al.  Cell Shape: Determinants, Regulation, and Regulatory Role , 1989 .

[8]  P. Wong A basis of echinocytosis and stomatocytosis in the disc-sphere transformations of the erythrocyte. , 1999, Journal of theoretical biology.

[9]  R. Seeler Living Blood Cells and Their Ultrastructure , 1974 .

[10]  R. Lipowsky,et al.  Domain-induced budding of vesicles. , 1993, Physical review letters.

[11]  Y. Lange,et al.  Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape. , 1982, Journal of lipid research.

[12]  R Josephs,et al.  Remodeling the shape of the skeleton in the intact red cell. , 1996, Biophysical journal.

[13]  Seifert,et al.  Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[15]  S. Leibler,et al.  Curvature instability in membranes , 1986 .

[16]  K. J. Lee,et al.  Membrane bilayer balance and erythrocyte shape: a quantitative assessment. , 1985, Biochemistry.

[17]  J. Simeon,et al.  Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. , 2001, Biophysical journal.

[18]  M. Sheetz,et al.  Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R Skalak,et al.  Mechanics and thermodynamics of biomembranes: part 1. , 1979, CRC critical reviews in bioengineering.

[20]  Robert B. Gennis,et al.  Biomembranes: Molecular Structure and Function , 1988 .

[21]  M. Bessis Cytology of the Blood and Blood-Forming Organs , 1957 .

[22]  Marcel Bessis,et al.  Living Blood Cells and Their Ultrastructure , 1972 .

[23]  A. C. Burton,et al.  Distribution of Size and Shape in Populations of Normal Human Red Cells , 1968, Circulation research.

[24]  E. Sackmann,et al.  Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. , 1995, Biophysical journal.

[25]  A. Iglič A possible mechanism determining the stability of spiculated red blood cells. , 1997, Journal of biomechanics.

[26]  A. Signy Cytology of the Blood and Blood-forming Organs , 1957 .

[27]  W. Wu,et al.  Effective bilayer expansion and erythrocyte shape change induced by monopalmitoyl phosphatidylcholine. Quantitative light microscopy and nuclear magnetic resonance spectroscopy measurements. , 1990, Biophysical journal.

[28]  H Schmid-Schönbein,et al.  The stress-free shape of the red blood cell membrane. , 1981, Biophysical journal.

[29]  A W Jay,et al.  Geometry of the human erythrocyte. I. Effect of albumin on cell geometry. , 1975, Biophysical journal.

[30]  E. Ponder Hemolysis and related phenomena , 1948 .

[31]  Seifert,et al.  Curvature-induced lateral phase segregation in two-component vesicles. , 1993, Physical review letters.