Selecting fruits with carbon nanotube sensors.

Sensor strategy bears fruit: A nature-inspired Cu(I) complex was employed to fabricate single-walled carbon nanotube sensors that can selectively detect ethylene gas at concentrations as low as 0.5 ppm. Such nanosensors may be used to monitor ethylene gas emitted from fruits to monitor their ripening.

[1]  N. Myung,et al.  Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. , 2010, Analytical chemistry.

[2]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[3]  T. Swager,et al.  Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. , 2008, Journal of the American Chemical Society.

[4]  T. Swager,et al.  Detection of ethylene gas by fluorescence turn-on of a conjugated polymer. , 2010, Angewandte Chemie.

[5]  Alexander Star,et al.  Gas sensor array based on metal-decorated carbon nanotubes. , 2006, The journal of physical chemistry. B.

[6]  Douglas R. Kauffman,et al.  Gas‐ und Dampfsensoren auf der Basis von Kohlenstoff‐Nanoröhren , 2008 .

[7]  N. Myung,et al.  Recent progress in carbon nanotube-based gas sensors , 2008, Nanotechnology.

[8]  Ulrike Tisch,et al.  Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples. , 2009, Nano letters.

[9]  Brad M. Binder,et al.  A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. , 1999, Science.

[10]  A. Star,et al.  Carbon nanotube sensors for exhaled breath components , 2007 .

[11]  Timothy M. Swager,et al.  Selektiver Nachweis von Ethylengas mit Kohlenstoffnanoröhren als Hilfsmittel in der Fruchtreifebestimmung , 2012 .

[12]  S. Semancik,et al.  Bioinspired methodology for artificial olfaction. , 2008, Analytical chemistry.

[13]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[14]  A. Gelperin,et al.  DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers , 2012 .

[15]  S. P. Burg,et al.  Ethylene Action and the Ripening of Fruits , 1965, Science.

[16]  E. Snow,et al.  Chemical vapor detection using single-walled carbon nanotubes. , 2006, Chemical Society reviews.

[17]  A. Star,et al.  Chemical Sensing with Polyaniline Coated Single‐Walled Carbon Nanotubes , 2011, Advanced materials.

[18]  Douglas R. Kauffman,et al.  Decorated carbon nanotubes with unique oxygen sensitivity. , 2009, Nature chemistry.

[19]  J. Janata Peer Reviewed: Centennial Retrospective on Chemical Sensors , 2001 .

[20]  A. Star,et al.  Welding of gold nanoparticles on graphitic templates for chemical sensing. , 2012, Journal of the American Chemical Society.

[21]  Fei Wang,et al.  Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. , 2011, Journal of the American Chemical Society.

[22]  T. Swager,et al.  Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. , 2012, Angewandte Chemie.

[23]  Douglas R. Kauffman,et al.  Carbon nanotube gas and vapor sensors. , 2008, Angewandte Chemie.

[24]  Jianshi Tang,et al.  Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. , 2011, Nano letters.