The MIMO Wireless Switch: Relaying can increase the multiplexing gain

This paper considers an interference network composed of K half-duplex single-antenna pairs of users who wish to establish bi-directional communication with the aid of a multi-input-multi-output (MIMO) half-duplex relay node. This channel is referred to as the “MIMO Wireless Switch” since, for the sake of simplicity, our model assumes no direct link between the two end nodes of each pair implying that all communication must go through the relay node (i.e., the MIMO switch). Assuming a delay-limited scenario, the fundamental limits in the high signal-to-noise ratio (SNR) regime is analyzed using the diversity-multiplexing tradeoff (DMT) framework. Our results sheds light on the structure of optimal transmission schemes and the gain offered by the relay node in two distinct cases, namely reciprocal and non-reciprocal channels (between the relay and end-users). In particular, the existence of a relay node, equipped with a sufficient number of antennas, is shown to increase the multiplexing gain; as compared with the traditional fully connected K-pair interference channel. To the best of our knowledge, this is the first known example where adding a relay node results in enlarging the pre-log factor of the sum rate. Moreover, for the case of reciprocal channels, it is shown that, when the relay has a number of antennas at least equal to the sum of antennas of all the users, static time allocation of decode and forward (DF) type schemes is optimal. On the other hand, in the non-reciprocal scenario, we establish the optimality of dynamic decode and forward in certain relevant scenarios.

[1]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[2]  Andrea J. Goldsmith,et al.  On the duality of Gaussian multiple-access and broadcast channels , 2002, IEEE Transactions on Information Theory.

[3]  Elza Erkip,et al.  User cooperation diversity. Part II. Implementation aspects and performance analysis , 2003, IEEE Trans. Commun..

[4]  Aria Nosratinia,et al.  The multiplexing gain of wireless networks , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[5]  Lizhong Zheng,et al.  Diversity-multiplexing tradeoff in multiple-access channels , 2004, IEEE Transactions on Information Theory.

[6]  Elza Erkip,et al.  Multiple-Antenna Cooperative Wireless Systems: A Diversity–Multiplexing Tradeoff Perspective , 2006, IEEE Transactions on Information Theory.

[7]  Giuseppe Caire,et al.  On achievable rates in a multi-antenna broadcast downlink , 2000 .

[8]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[9]  Syed Ali Jafar,et al.  Interference Alignment and Degrees of Freedom of the $K$-User Interference Channel , 2008, IEEE Transactions on Information Theory.

[10]  Elza Erkip,et al.  User cooperation diversity. Part I. System description , 2003, IEEE Trans. Commun..

[11]  Syed A. Jafar,et al.  Interference Alignment and the Degrees of Freedom for the 3 User Interference Channel , 2007 .