Noise Optimization for High-Bandwidth Ion Channel Recordings

Noise Optimization for High-Bandwidth Ion Channel Recordings Jacob Karl Rosenstein Single-molecule measurements often exhibit weak signals and fast kinetics, making them particularly challenging to record with high fidelity. This thesis presents an analysis of voltage-clamp current recordings of single ion channels, and concludes that considerable improvements in signal-to-noise ratios can be achieved by minimizing all parasitic capacitances associated with these measurements. A custom integrated amplifier in a 0.13μm complementary metal oxide semiconductor (CMOS) process is designed for high-bandwidth ion channel recordings, and systems are designed to closely incorporate this amplifier with solid-state nanopore sensors, lipid membranes, and biological ion channels. The low capacitance of these integrated platforms reduces noise at high frequencies, enabling signals to be measured up to ten times faster than had been previously achieved. In addition to improving signal quality, the small physical size of these integrated systems portends the arrival of massively parallel high-performance ion channel recording systems for drug discovery and biomolecular sensing applications.

[1]  William B. Dunbar,et al.  An area-efficient low-noise CMOS DNA detection sensor for multichannel nanopore applications , 2013 .

[2]  Christine Williams,et al.  Patch clamping by numbers. , 2004, Drug discovery today.

[3]  O. Andersen Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. , 1983, Biophysical journal.

[4]  Mark Akeson,et al.  Single-molecule analysis of DNA-protein complexes using nanopores , 2007, Nature Methods.

[5]  M. Drndić,et al.  Nanopore analysis of individual RNA/antibiotic complexes. , 2011, ACS nano.

[6]  George M Whitesides,et al.  Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. , 2003, Biophysical journal.

[7]  Jingmin Jin,et al.  Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. , 2010, Nature nanotechnology.

[8]  Eugenio Culurciello,et al.  An Integrated Patch-Clamp Amplifier in Silicon-on-Sapphire CMOS , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  F. Sigworth,et al.  Microchip technology in ion-channel research , 2005, IEEE Transactions on NanoBioscience.

[10]  F. Sigworth Electronic Design of the Patch Clamp , 1983 .

[11]  F. Sigworth Design of the EPC-9, a computer-controlled patch-clamp amplifier. 1. Hardware , 1995, Journal of Neuroscience Methods.

[12]  M. Graham,et al.  The Coulter Principle: Foundation of an Industry , 2003 .

[13]  Michael George,et al.  High-resolution electrophysiology on a chip: Transient dynamics of alamethicin channel formation. , 2006, Biochimica et biophysica acta.

[14]  Minchen Chien,et al.  PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis , 2012, Scientific Reports.

[15]  Andre Marziali,et al.  Noise analysis and reduction in solid-state nanopores , 2007 .

[16]  David D. Jensen,et al.  A monolithic patch-clamping amplifier with capacitive feedback , 1989, Journal of Neuroscience Methods.

[17]  Yannis Tsividis,et al.  Mixed analog-digital VLSI devices and technology , 1996 .

[18]  W. E. Moerner,et al.  A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics , 2002 .

[19]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[20]  F. Hooge 1/f noise sources , 1994 .

[21]  R. Peri,et al.  High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology , 2008, Nature Reviews Drug Discovery.

[22]  R A Levis,et al.  The use of quartz patch pipettes for low noise single channel recording. , 1993, Biophysical journal.

[23]  C. Trautmann,et al.  Microstructured glass chip for ion-channel electrophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[25]  Jürgen Rühe,et al.  Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray. , 2011, ACS nano.

[26]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Haydon,et al.  Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. , 1972, Biochimica et biophysica acta.

[28]  Isao Karube,et al.  Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability , 1998 .

[29]  Kenneth L. Shepard,et al.  Noise and bandwidth performance of single-molecule biosensors , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[30]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[31]  H. Fröhlich,et al.  Theory of Dielectrics: Dielectric Constant and Dielectric Loss , 1960 .

[32]  Hugh E. Olsen,et al.  Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel , 2001, Nature Biotechnology.

[33]  Jürgen Rühe,et al.  Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. , 2008, Lab on a chip.

[34]  R. Feynman There’s plenty of room at the bottom , 2011 .

[35]  Lukas Novotny,et al.  Low-temperature compatible I–V converter , 1992 .

[36]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Eugenio Culurciello,et al.  Noise Analysis and Performance Comparison of Low Current Measurement Systems for Biomedical Applications , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[38]  M. Sampietro,et al.  Transimpedance Amplifier for High Sensitivity Current Measurements on Nanodevices , 2009, IEEE Journal of Solid-State Circuits.

[39]  John K. Tomfohr,et al.  Reproducible Measurement of Single-Molecule Conductivity , 2001, Science.

[40]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[41]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[42]  Mark L Dallas,et al.  Robotic multiwell planar patch-clamp for native and primary mammalian cells , 2009, Nature Protocols.

[43]  E. Bamberg,et al.  Single-channel parameters of gramicidin A,B, and C. , 1976, Biochimica et biophysica acta.

[44]  N H Dekker,et al.  Noise in solid-state nanopores , 2008, Proceedings of the National Academy of Sciences.

[45]  William A. MacCrehan,et al.  Ag/AgCl microelectrodes with improved stability for microfluidics , 2006 .

[46]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[47]  Amitabha Chattopadhyay,et al.  The gramicidin ion channel: a model membrane protein. , 2007, Biochimica et biophysica acta.

[48]  Michele Zagnoni,et al.  Miniaturised technologies for the development of artificial lipid bilayer systems. , 2012, Lab on a chip.

[49]  Zuzanna S Siwy,et al.  Resistive-pulse DNA detection with a conical nanopore sensor. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[50]  D. Cafiso Alamethicin: a peptide model for voltage gating and protein-membrane interactions. , 1994, Annual review of biophysics and biomolecular structure.

[51]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[52]  N H Dekker,et al.  Low-frequency noise in solid-state nanopores , 2009, Nanotechnology.

[53]  Willy Sansen,et al.  Limits of low noise performance of detector readout front ends in CMOS technology , 1990 .

[54]  Mark Akeson,et al.  Automated Forward and Reverse Ratcheting of DNA in a Nanopore at Five Angstrom Precision1 , 2012, Nature Biotechnology.

[55]  D. Haydon,et al.  Potential-dependent conductances in lipid membranes containing alamethicin. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[57]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[58]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[59]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of Life Reviews.

[60]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[61]  K. L. Shepard,et al.  Nanopore DNA sensors in CMOS with on-chip low-noise preamplifiers , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[62]  D. O. Rudin,et al.  Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System , 1962, Nature.

[63]  Michael George,et al.  Port-a-patch and patchliner: high fidelity electrophysiology for secondary screening and safety pharmacology. , 2009, Combinatorial chemistry & high throughput screening.

[64]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[65]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[66]  Kenneth L. Shepard,et al.  Active CMOS biochip for electrochemical DNA assays , 2009 .

[67]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[68]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[69]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[70]  U. Rant,et al.  Data analysis of translocation events in nanopore experiments. , 2009, Analytical chemistry.

[71]  Henry A. Lester,et al.  Gating Transitions in Bacterial Ion Channels Measured at 3 μs Resolution , 2004, The Journal of general physiology.

[72]  F. A. Levinzon,et al.  Noise of the JFET amplifier , 2000 .

[73]  J. Reiner,et al.  Theory for polymer analysis using nanopore-based single-molecule mass spectrometry , 2010, Proceedings of the National Academy of Sciences.

[74]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[75]  Meni Wanunu,et al.  Chemically modified solid-state nanopores. , 2007, Nano letters.

[76]  A. J. Peyton,et al.  Bootstrapping techniques to improve the bandwidth of transimpedance amplifiers , 1998 .

[77]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[78]  D. G. Howitt,et al.  Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA , 2007 .

[79]  Z. Siwy,et al.  Nanofluidic diode. , 2007, Nano letters.

[80]  M. Heckmann,et al.  Single channel currents at six microsecond resolution elicited by acetylcholine in mouse myoballs , 1998, The Journal of physiology.

[81]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[82]  Francisco Bezanilla,et al.  Fast gating in the Shaker K+ channel and the energy landscape of activation , 2003, Proceedings of the National Academy of Sciences of the United States of America.