Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws

A mathematical formulation of conservation and of balance laws with random input data, specifically with random initial conditions, random source terms and random flux functions, is reviewed. The concept of random entropy solution is specified. For scalar conservation laws in multi-dimensions, recent results on the existence and on the uniqueness of random entropy solutions with finite variances are presented. The combination of Monte Carlo sampling with Finite Volume Method discretization in space and time for the numerical approximation of the statistics of random entropy solutions is proposed. The finite variance of random entropy solutions is used to prove asymptotic error estimates for combined Monte Carlo Finite Volume Method discretizations of scalar conservation laws with random inputs. A Multi-Level extension of combined Monte Carlo Finite Volume Method (MC-FVM) discretizations is proposed and asymptotic error bounds are presented in the case of scalar, nonlinear hyperbolic conservation laws. Sparse tensor constructions for the computation of compressed approximations of two- and k-point space-time correlation functions of random entropy solutions are introduced.Asymptotic error versus work estimates indicate superiority of Multi-Level versions of MC-FVM over the plain MC-FVM, under comparable assumptions on the random input data. In particular, it is shown that these compressed sparse tensor approximations converge essentially at the same rate as the MLMC-FVM estimators for the mean solutions.Extensions of the proposed algorithms to nonlinear, hyperbolic systems of balance laws are outlined. Multiresolution discretizations of random source terms which are exactly bias-free are indicated.Implementational aspects of these Multi-Level Monte Carlo Finite Volume methods, in particular results on large scale random number generation, scalability and resilience on emerging massively parallel computing platforms, are discussed.

[1]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[2]  Long Chen FINITE VOLUME METHODS , 2011 .

[3]  Svetlana Tokareva,et al.  High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data , 2011 .

[4]  Alexandre Ern,et al.  Intrusive projection methods with upwinding for uncertain nonlinear hyperbolic systems , 2009 .

[5]  Christoph Schwab,et al.  Sparse finite element methods for operator equations with stochastic data , 2006 .

[6]  Jonas Sukys,et al.  Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers , 2011, PPAM.

[7]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[8]  Svetlana Tokareva,et al.  High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data , 2013 .

[9]  Peter F. Fisher,et al.  Causes and consequences of error in digital elevation models , 2006 .

[10]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[11]  Jan S. Hesthaven,et al.  Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .

[12]  Svetlana Tokareva,et al.  Numerical solution of scalar conservation laws with random flux functions , 2014 .

[13]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[14]  G. Schmidlin,et al.  Fast solution algorithms for integral equations in R , 2003 .

[15]  Jonas Sukys,et al.  Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..

[16]  R. Hiptmair,et al.  Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes , 2014 .

[17]  Siddhartha Mishra,et al.  Approximate Riemann Solvers and Robust High-Order Finite Volume Schemes for Multi-Dimensional Ideal MHD Equations , 2011 .

[18]  Pierre L'Ecuyer,et al.  Improved long-period generators based on linear recurrences modulo 2 , 2004, TOMS.

[19]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[20]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[21]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[22]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[23]  Peter Arbenz,et al.  Intrinsic fault tolerance of multi level Monte Carlo methods , 2012 .

[24]  M. S. Horritt,et al.  Parameterisation, Validation and Uncertainty Analysis of CFD Models of Fluvial and Flood Hydraulics in the Natural Environment , 2005 .

[25]  Mathematisches Forschungsinstitut Oberwolfach,et al.  Hyperbolic Conservation Laws , 2004 .

[26]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[27]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[28]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[29]  B. Welford Note on a Method for Calculating Corrected Sums of Squares and Products , 1962 .

[30]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[31]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[32]  M. Chial,et al.  in simple , 2003 .

[33]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[34]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[35]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[36]  Randall J. LeVeque,et al.  Tsunami modelling with adaptively refined finite volume methods* , 2011, Acta Numerica.

[37]  G E Karniadakis,et al.  The stochastic piston problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[39]  Christoph Schwab,et al.  Wavelet Galerkin BEM on Unstructured Meshes by Aggregation , 2002 .

[40]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[41]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[42]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[43]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[44]  Johan Bijnensaa A Parametrization for , .

[45]  C. Schwab,et al.  Multi-level Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions , 2011 .

[46]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[47]  Alexandre Ern,et al.  Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..

[48]  Jeroen A. S. Witteveen,et al.  An adaptive Stochastic Finite Elements approach based on Newton–Cotes quadrature in simplex elements , 2009 .

[49]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[50]  Paul D. Bates,et al.  Computational Fluid Dynamics: Applications in Environmental Hydraulics , 2013 .

[51]  Eitan Tadmor,et al.  Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography , 2011, J. Comput. Phys..

[52]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[53]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[54]  Pierre L'Ecuyer,et al.  Fast random number generators based on linear recurrences modulo 2: overview and comparison , 2005, Proceedings of the Winter Simulation Conference, 2005..