Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws
暂无分享,去创建一个
[1] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[2] Long Chen. FINITE VOLUME METHODS , 2011 .
[3] Svetlana Tokareva,et al. High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data , 2011 .
[4] Alexandre Ern,et al. Intrusive projection methods with upwinding for uncertain nonlinear hyperbolic systems , 2009 .
[5] Christoph Schwab,et al. Sparse finite element methods for operator equations with stochastic data , 2006 .
[6] Jonas Sukys,et al. Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers , 2011, PPAM.
[7] Message Passing Interface Forum. MPI: A message - passing interface standard , 1994 .
[8] Svetlana Tokareva,et al. High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data , 2013 .
[9] Peter F. Fisher,et al. Causes and consequences of error in digital elevation models , 2006 .
[10] Charles E. Clark,et al. Monte Carlo , 2006 .
[11] Jan S. Hesthaven,et al. Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .
[12] Svetlana Tokareva,et al. Numerical solution of scalar conservation laws with random flux functions , 2014 .
[13] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[14] G. Schmidlin,et al. Fast solution algorithms for integral equations in R , 2003 .
[15] Jonas Sukys,et al. Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..
[16] R. Hiptmair,et al. Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes , 2014 .
[17] Siddhartha Mishra,et al. Approximate Riemann Solvers and Robust High-Order Finite Volume Schemes for Multi-Dimensional Ideal MHD Equations , 2011 .
[18] Pierre L'Ecuyer,et al. Improved long-period generators based on linear recurrences modulo 2 , 2004, TOMS.
[19] Siddhartha Mishra,et al. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..
[20] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .
[21] G. Karniadakis,et al. Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .
[22] Xiang Ma,et al. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..
[23] Peter Arbenz,et al. Intrinsic fault tolerance of multi level Monte Carlo methods , 2012 .
[24] M. S. Horritt,et al. Parameterisation, Validation and Uncertainty Analysis of CFD Models of Fluvial and Flood Hydraulics in the Natural Environment , 2005 .
[25] Mathematisches Forschungsinstitut Oberwolfach,et al. Hyperbolic Conservation Laws , 2004 .
[26] Message P Forum,et al. MPI: A Message-Passing Interface Standard , 1994 .
[27] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[28] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[29] B. Welford. Note on a Method for Calculating Corrected Sums of Squares and Products , 1962 .
[30] A. Bressan. Hyperbolic Systems of Conservation Laws , 1999 .
[31] Jonas Sukys,et al. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..
[32] M. Chial,et al. in simple , 2003 .
[33] Bernardo Cockburn,et al. The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .
[34] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[35] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[36] Randall J. LeVeque,et al. Tsunami modelling with adaptively refined finite volume methods* , 2011, Acta Numerica.
[37] G E Karniadakis,et al. The stochastic piston problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[38] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[39] Christoph Schwab,et al. Wavelet Galerkin BEM on Unstructured Meshes by Aggregation , 2002 .
[40] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[41] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[42] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[43] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[44] Johan Bijnensaa. A Parametrization for , .
[45] C. Schwab,et al. Multi-level Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions , 2011 .
[46] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[47] Alexandre Ern,et al. Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..
[48] Jeroen A. S. Witteveen,et al. An adaptive Stochastic Finite Elements approach based on Newton–Cotes quadrature in simplex elements , 2009 .
[49] Timothy J. Barth,et al. Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.
[50] Paul D. Bates,et al. Computational Fluid Dynamics: Applications in Environmental Hydraulics , 2013 .
[51] Eitan Tadmor,et al. Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography , 2011, J. Comput. Phys..
[52] Bruno Després,et al. Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..
[53] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[54] Pierre L'Ecuyer,et al. Fast random number generators based on linear recurrences modulo 2: overview and comparison , 2005, Proceedings of the Winter Simulation Conference, 2005..