GARMA Modeling of ECG and Classification of Arrhythmia

Computer-assisted arrhythmia detection is crucial for the treatment of cardiac disorders. Electrocardiograms (ECG) are used to study the electric heart activity and diagnose abnormalities in the heart. It is a non-invasive method where the electric signal of the heart is captured through electrodes placed on the skin. In this study the ECG signals will be classified according to the heart abnormalities using the Generalized Autoregressive Moving Average (GARMA) and Generalized Linear Model (GLM). The ECG features were extracted using the GARMA model. The coefficients obtained from GARMA model will be classified using the GLM model to detect and classify into normal and five types of arrhythmias.

[1]  Sultan Moulay,et al.  AR Modeling for Cardiac Arrhythmia Classification using MLP Neural Networks , 2012 .

[2]  A. Kandaswamy,et al.  ECG arrhythmia classification based on logistic model tree , 2009 .

[3]  Xiao-Hua Yu,et al.  Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks , 2009, 2009 IEEE International Conference on Automation and Logistics.

[4]  Mahesh S. Chavan,et al.  Channel Robust MFCCs for Continuous Speech Speaker Recognition , 2014, SIRS.

[5]  Mo Jamshidi,et al.  Modeling Cardiovascular Dynamics Using a Parallel Structure with Auto-Regressive and Neuro-Fuzzy Inference , 2008 .

[6]  D. Ge,et al.  Cardiac arrhythmia classification using autoregressive modeling , 2002, Biomedical engineering online.

[7]  Mustafa Alhamdi,et al.  AR-based Method for ECG Classification and Patient Recognition , 2013 .

[8]  Ahmad Ayatollahi,et al.  Automatic Atrial Fibrillation Detection Using Autoregressive Modeling , .

[10]  U. Rajendra Acharya,et al.  Automatic identification of cardiac health using modeling techniques: A comparative study , 2008, Inf. Sci..

[11]  William N. Venables,et al.  GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research , 2004 .

[12]  S. Peiris,et al.  TIME SERIES PROPERTIES OF THE CLASS OF FIRST ORDER AUTOREGRESSIVE PROCESSES WITH GENERALIZED MOVING AVERAGE ERRORS , 2009 .

[13]  P. Kohl,et al.  Cardiac mechano-electric coupling and arrhythmias , 2011 .

[14]  Madhuchhanda Mitra,et al.  R-Peak Detection Algorithm for Ecg using Double Difference And RR Interval Processing , 2012 .

[15]  R. Kumar,et al.  Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network , 2011 .

[16]  Jan P. Kucera,et al.  Uncovering the Dynamics of Cardiac Systems Using Stochastic Pacing and Frequency Domain Analyses , 2012, PLoS Comput. Biol..

[17]  Abiodun Musa Aibinu,et al.  Review of Parameter Estimation Techniques for Time-Varying Autoregressive Models of Biomedical Signals , 2016 .

[18]  Enrique Arias,et al.  A prediction of electrocardiography signals by combining ARMA model with nonlinear analysis methods , 2011 .

[19]  A. Goshvarpour,et al.  Spectral and Time Based Assessment of Meditative Heart Rate Signals , 2013 .

[20]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[21]  Melissa D. Krebs,et al.  Autoregressive modeling of analytical sensor data can yield classifiers in the predictor coefficient parameter space , 2005, Bioinform..

[22]  Reecha Sharma,et al.  Comparative study of FIR and IIR filters for the removal of 50 Hz noise from EEG signal , 2016 .

[23]  Dragana Bajic,et al.  Predictive ECG coding using linear time-invariant models , 2004 .

[24]  A. Ouelli AR Modeling for Automatic Cardiac Arrhythmia Diagnosis using QDF Based Algorithm , 2012 .

[25]  F. Schlindwein,et al.  A study on the optimum order of autoregressive models for heart rate variability. , 2002, Physiological measurement.

[26]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .