Electromagnetic Near-Field Nanoantennas for Subdiffraction-Limited Surface Plasmon-Enhanced Light Microscopy

We investigate electromagnetically amplified local fields or hot spots created by surface nanoantennas for subdiffraction-limited plasmon-enhanced microscopy under total internal reflection at angled light incidence. Different shapes of near-field hot spots were calculated by varying geometrical parameters of nanoantenna structures. An inverse relationship between full-width-at-half-maximum (FWHM) and ellipticity of a hot spot was found. Among the three patterns considered, square nanoantenna patterns provided the smallest FWHM ellipticity product with a spot size of approximately 53 × 110 nm2 due to efficient plasmon localization. The size of a nanopattern affects FWHM significantly by producing a smaller hot spot if the size decreases. The effects of other parameters are also discussed.

[1]  J. Kottmann,et al.  Spectral response of plasmon resonant nanoparticles with a non-regular shape. , 2000, Optics express.

[2]  Nathan Blow,et al.  Proteins and proteomics: life on the surface , 2009, Nature Methods.

[3]  Robert M. Corn,et al.  A Multistep Chemical Modification Procedure To Create DNA Arrays on Gold Surfaces for the Study of Protein−DNA Interactions with Surface Plasmon Resonance Imaging , 1999 .

[4]  Donghyun Kim,et al.  Imaging: Nanoscale Localization Sampling Based on Nanoantenna Arrays for Super‐resolution Imaging of Fluorescent Monomers on Sliding Microtubules (Small 6/2012) , 2012 .

[5]  N I Zheludev,et al.  Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots. , 2010, Physical review letters.

[6]  Kyujung Kim,et al.  Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus. , 2010, Small.

[7]  Chong Xie,et al.  Vertical nanopillars for highly localized fluorescence imaging , 2011, Proceedings of the National Academy of Sciences.

[8]  Xianfan Xu,et al.  Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture , 2005 .

[9]  Kyujung Kim,et al.  Target-Localized Nanograting-Based Surface Plasmon Resonance Detection toward Label-free Molecular Biosensing , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Donghyun Kim,et al.  Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Toshio Yanagida,et al.  Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution. , 1998 .

[12]  Peter Nordlander,et al.  Unidirectional broadband light emission from supported plasmonic nanowires. , 2011, Nano letters.

[13]  Dong Jun Kim,et al.  Subwavelength grating-based nanoplasmonic modulation for surface plasmon resonance imaging with enhanced resolution , 2010 .

[14]  Claus Ropers,et al.  Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. , 2010, Nano letters.

[15]  V. Giannini,et al.  Surface Plasmon Resonances of Metallic Nanostars/Nanoflowers for Surface-Enhanced Raman Scattering , 2009, 0910.4269.

[16]  Xianfan Xu,et al.  Enhanced optical near field from a bowtie aperture , 2006 .

[17]  Jan Renger,et al.  Distance dependent spectral tuning of two coupled metal nanoparticles. , 2008, Nano letters.

[18]  Byoungho Lee,et al.  Review on subwavelength confinement of light with plasmonics , 2010 .

[19]  Zhi‐zhan Xu,et al.  Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. , 2009, ACS nano.

[20]  E. Fort,et al.  Surface enhanced fluorescence , 2008 .

[21]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[22]  P. Leiderer,et al.  Visualization of Near-Field Enhancements of Gold Triangles by Nonlinear Photopolymerization , 2011 .

[23]  Kyujung Kim,et al.  Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence. , 2010, Optics letters.

[24]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[25]  Lambertus Hesselink,et al.  Design of a C aperture to achieve λ/10 resolution and resonant transmission , 2004 .

[26]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[27]  Björn Persson,et al.  Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. , 2004, Journal of the American Chemical Society.

[28]  O. Ersoy,et al.  Improving near-field confinement of a bowtie aperture using surface plasmon polaritons , 2011 .

[29]  David R. Smith,et al.  Plasmon resonances of silver nanowires with a nonregular cross section , 2001 .

[30]  Translation of nanoantenna hot spots by a metal-dielectric composite superlens , 2009, 0906.4088.

[31]  Bernhard Lamprecht,et al.  Fluorescence imaging of surface plasmon fields , 2002 .

[32]  Qian Tian,et al.  Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture , 2005 .

[33]  Xianfan Xu,et al.  High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging , 2007 .

[34]  W. Challener,et al.  Near‐field radiation of bow‐tie antennas and apertures at optical frequencies , 2003, Journal of microscopy.

[35]  E. G. van Putten,et al.  Optimal concentration of light in turbid materials , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[36]  B. Luk’yanchuk,et al.  Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide , 2010 .

[37]  Yongqi Fu,et al.  Plasmonic Resonance Excited Extinction Spectra of Cross-Shaped Ag Nanoparticles , 2010 .

[38]  Ewold Verhagen,et al.  Nanofocusing in laterally tapered plasmonic waveguides. , 2008, Optics express.

[39]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[40]  Xianfan Xu,et al.  Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film , 2004 .

[41]  Cho,et al.  New formalism of the Kronig-Penney model with application to superlattices. , 1987, Physical review. B, Condensed matter.

[42]  Keiko Tawa,et al.  Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. , 2005, Biophysical journal.

[43]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[44]  Y. Wang,et al.  Flying plasmonic lens in the near field for high-speed nanolithography. , 2008, Nature nanotechnology.

[45]  K Tanaka,et al.  Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton , 2003, Journal of microscopy.

[46]  Lambertus Hesselink,et al.  Ultrahigh light transmission through a C-shaped nanoaperture. , 2003, Optics letters.

[47]  Lambertus Hesselink,et al.  High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers. , 2007, Optics Express.

[48]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[49]  Albert Polman,et al.  Programmable nanolithography with plasmon nanoparticle arrays. , 2007, Nano letters.

[50]  Kyujung Kim,et al.  Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures. , 2009, Optics letters.

[51]  V. Dierolf,et al.  Direct near-field optical imaging of UV bowtie nanoantennas. , 2009, Optics express.

[52]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[53]  Ignacy Gryczynski,et al.  Metal-enhanced fluorescence: an emerging tool in biotechnology. , 2005, Current opinion in biotechnology.

[54]  Donghyun Kim,et al.  Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas. , 2011, Optics letters.

[55]  Chi-Hung Lin,et al.  Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy. , 2006, Optics express.

[56]  J. Liaw,et al.  Enhancement or quenching effect of metallic nanodimer on spontaneous emission , 2010 .

[57]  U. Fischer,et al.  On the optimum form of an aperture for a confinement of the optically excited electric near field , 2008, Journal of microscopy.

[58]  David A. Fattal,et al.  Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy , 2009 .