Strong coupling of single emitters to surface plasmons

We propose a method that enables strong, coherent coupling between individual optical emitters and electromagnetic excitations in conducting nanostructures. The excitations are optical plasmons that can be localized to subwavelength dimensions. Under realistic conditions, the tight confinement causes optical emission to be almost entirely directed into the propagating plasmon modes via a mechanism analogous to cavity quantum electrodynamics. We first illustrate this result for the case of a nanowire, before considering the optimized geometry of a nanotip. We describe an application of this technique involving efficient single-photon generation on demand, in which the plasmons are efficiently outcoupled to a dielectric waveguide. Finally, we analyze the effects of increased scattering due to surface roughness on these nanostructures.

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[3]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[4]  M. Lukin,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[5]  A. Zayats,et al.  Imaging with short-wavelength surface plasmon polaritons , 2005 .

[6]  D. DiVincenzo,et al.  Local fault-tolerant quantum computation , 2004, quant-ph/0410047.

[7]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[8]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[9]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[10]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[11]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[12]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[13]  V. Klimov Spontaneous emission rate of an excited atom placed near a nanofiber (17 pages) , 2004 .

[14]  S. Maier,et al.  Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing , 2003, physics/0312058.

[15]  P. Barclay,et al.  Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities , 2003 .

[16]  M. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2003, quant-ph/0309106.

[17]  M. Lukin,et al.  Capacitive coupling of atomic systems to mesoscopic conductors. , 2003, Physical review letters.

[18]  Anatoly V. Zayats,et al.  Near-field photonics: surface plasmon polaritons and localized surface plasmons , 2003 .

[19]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[20]  S. Oldenburg,et al.  Base pair mismatch recognition using plasmon resonant particle labels. , 2002, Analytical biochemistry.

[21]  David R. Smith,et al.  Single crystal silver nanowires prepared by the metal amplification method , 2002 .

[22]  G. Solomon,et al.  Available online at www.sciencedirect.com , 2000 .

[23]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[24]  Younan Xia,et al.  Crystalline Silver Nanowires by Soft Solution Processing , 2002 .

[25]  R A Linke,et al.  Enhanced light transmission through a single subwavelength aperture. , 2001, Optics letters.

[26]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[27]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[28]  L. Andrew Lyon,et al.  Unidirectional Plasmon Propagation in Metallic Nanowires , 2000 .

[29]  Gottfried Strasser,et al.  Surface plasmon-enhanced photoluminescence from a single quantum well , 1999 .

[30]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[31]  S. Barnett,et al.  Quantum local-field corrections and spontaneous decay , 1999 .

[32]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[33]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[34]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[35]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[36]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[37]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[38]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[39]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[40]  Dreyer,et al.  Quantum Rabi oscillation: A direct test of field quantization in a cavity. , 1996, Physical review letters.

[41]  L. Libioulle,et al.  Very sharp gold and platinum tips to modify gold surfaces in scanning tunneling microscopy , 1995 .

[42]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[43]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[44]  George,et al.  Convergent scheme for light scattering from an arbitrary deep metallic grating. , 1986, Physical review. B, Condensed matter.

[45]  J. Sipe,et al.  Quantum electrodynamics near an interface , 1984 .

[46]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[47]  A. Maradudin,et al.  Effect of surface roughness on the image potential , 1980 .

[48]  J. Rayne,et al.  Temperature dependence of the infrared absorptivity of the noble metals , 1976 .

[49]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[50]  W. Lucke Electric Dipoles in the Presence of Elliptic and Circular Cylinders , 1951 .

[51]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[52]  J. Swinburne Electromagnetic Theory , 1894, Nature.