Retrieval of images from artistic repositories using a decision fusion framework

The large volumes of artistic visual data available to museums, art galleries, and online collections motivate the need for effective means to retrieve :relevant information from such repositories. The paper proposes a decision making framework for content-based retrieval of art images based on a combination of low-level features. Traditionally, the similarity between two images has been calculated as a weighted distance between two feature vectors. This approach, however, may not be mathematically and computationally appropriate, and does not provide enough flexibility in modeling user queries. The paper proposes a framework that generalizes a wide set of previous approaches to similarity calculation, including the weighted distance approach. Image similarities are obtained through a decision making process based on low-level feature distances using fuzzy theory. The analysis and results indicate that the presented aggregation technique provides an effective, general, and flexible tool for similarity calculation based on the combination of individual descriptors and features.

[1]  Hyoung-Joo Kim,et al.  A fast content-based indexing and retrieval technique by the shape information in large image database , 2001, J. Syst. Softw..

[2]  Fernando Pereira,et al.  MPEG-7 the generic multimedia content description standard, part 1 - Multimedia, IEEE , 2001 .

[3]  Huifang Sun,et al.  Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards , 1999 .

[4]  Thomas S. Huang,et al.  Relevance feedback techniques in interactive content-based image retrieval , 1997, Electronic Imaging.

[5]  Mohan S. Kankanhalli,et al.  Content-Based Image Retrieval Using a Composite Color-Shape Approach , 1998, Inf. Process. Manag..

[6]  Enric Trillas,et al.  A general class of triangular norm-based aggregation operators: quasi-linear T-S operators , 2002, Int. J. Approx. Reason..

[7]  Byung-Tae Chun,et al.  An effective method for combining multiple features of image retrieval , 1999, Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030).

[8]  Mauro Barni,et al.  Image Processing for Virtual Restoration of Artworks , 2000, IEEE Multim..

[9]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[11]  Thomas S. Huang,et al.  Supporting Ranked Boolean Similarity Queries in MARS , 1998, IEEE Trans. Knowl. Data Eng..

[12]  Konstantinos N. Plataniotis,et al.  Fuzzy aggregation of palette colors for hybrid querying of fine art image databases , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[13]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Mauro Barni,et al.  Image segmentation and region filling for virtual restoration of artworks , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[15]  Thierry Pun,et al.  Content-based query of image databases: inspirations from text retrieval , 2000, Pattern Recognit. Lett..

[16]  Atilla Baskurt,et al.  An Image Retrieval System Based on Local and Global Color Descriptions , 2001, IEEE Pacific Rim Conference on Multimedia.

[17]  Jau-Ling Shih,et al.  A Context-Based Approach for Color Image Retrieval , 2002, Int. J. Pattern Recognit. Artif. Intell..

[18]  Ramesh C. Jain,et al.  A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video , 2002, Pattern Recognit..

[19]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  J. Kacprzyk Fuzzy sets, decision making, and expert systems: H.-J. Zimmermann Kluwer, Dordrecht-Boston, 1987, ix + 335 pages, Dfl.145.00 , 1989 .

[21]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[22]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[23]  Binhai Zhu,et al.  Some Formal Analysis of Rocchio's Similarity-Based Relevance Feedback Algorithm , 2000, Information Retrieval.

[24]  John R. Smith,et al.  Quantitative assessment of image retrieval effectiveness , 2001, J. Assoc. Inf. Sci. Technol..

[25]  Konstantinos N. Plataniotis,et al.  Adaptive fuzzy systems for multichannel signal processing , 1999, Proc. IEEE.

[26]  K. Plataniotis,et al.  Color Image Processing and Applications , 2000 .

[27]  Robert M. Haralick,et al.  A weighted distance approach to relevance feedback , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[28]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  B. S. Manjunath,et al.  Category-based image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[30]  Anil K. Jain,et al.  Image retrieval using color and shape , 1996, Pattern Recognit..

[31]  Dong-Sik Jang,et al.  Visual information retrieval system via content-based approach , 2002, Pattern Recognit..

[32]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[33]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[34]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[35]  B. S. Manjunath,et al.  Introduction to MPEG-7: Multimedia Content Description Interface , 2002 .

[36]  Fabio Roli,et al.  Comparison and combination of adaptive query shifting and feature relevance learning for content-based image retrieval , 2001, Proceedings 11th International Conference on Image Analysis and Processing.

[37]  Paul L. Rosin,et al.  Incorporating shape into histograms for CBIR , 2002, Pattern Recognit..

[38]  Alberto Del Bimbo,et al.  Retrieval by Shape Similarity with Perceptual Distance and Effective Indexing , 2000, IEEE Trans. Multim..

[39]  Jean-Luc Marichal,et al.  On Comparison Meaningfulness of Aggregation Functions. , 2001, Journal of mathematical psychology.

[40]  Wei-Ying Ma,et al.  Learning similarity measure for natural image retrieval with relevance feedback , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[41]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[42]  Matthew L. Miller,et al.  The Bayesian Image Retrieval System, PicHunter , 2000 .

[43]  Leonidas Palios,et al.  An efficient shape-based approach to image retrieval , 2000, Pattern Recognit. Lett..

[44]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..