An Approach to Integrating Query Refinement in SQL

With the emergence of applications that require content-based similarity retrieval, techniques to support such a retrieval paradigm over database systems have emerged as a critical area of research. User subjectivity is an important aspect of such queries, i.e., which objects are relevant to the user and which are not depends on the perception of the user. Query refinement is used to handle user subjectivity in similarity search systems. This paper explores how to enhance database systems with query refinement for content-based (similarity) searches in object-relational databases. Query refinement is achieved through relevance feedback where the user judges individual result tuples and the system adapts and restructures the query to better reflect the users information need. We present a query refinement framework and an array of strategies for refinement that address different aspects of the problem. Our experiments demonstrate the effectiveness of the query refinement techniques proposed in this paper.

[1]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[2]  Martin L. Kersten,et al.  Query optimization strategies for browsing sessions , 1994, Proceedings of 1994 IEEE 10th International Conference on Data Engineering.

[3]  Rakesh Agrawal,et al.  Continuous querying in database-centric Web applications , 2000, Comput. Networks.

[4]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[5]  Ronald Fagin,et al.  Incorporating User Preferences in Multimedia Queries , 1997, ICDT.

[6]  Ophir Frieder,et al.  A parallel relational database management system approach to relevance feedback in information retrieval , 1999 .

[7]  Amanda Spink,et al.  Human-computer interaction in information retrieval: nature and manifestations of feedback , 1998, Interact. Comput..

[8]  Sharad Mehrotra,et al.  Efficient Query Refinement in Multimedia Databases , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[9]  Vijay V. Raghavan,et al.  Integration of information retrieval and database management systems , 1988, Inf. Process. Manag..

[10]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[11]  Hua Yang,et al.  CoBase: A scalable and extensible cooperative information system , 1996, Journal of Intelligent Information Systems.

[12]  Gerard Salton,et al.  The SMART Retrieval System , 1971 .

[13]  Pasquale Savino,et al.  Multimedia Document Search on the Web , 1998, Comput. Networks.

[14]  Eamonn J. Keogh,et al.  Relevance feedback retrieval of time series data , 1999, SIGIR '99.

[15]  Ilaria Bartolini,et al.  FeedbackBypass: A New Approach to Interactive Similarity Query Processing , 2001, VLDB.

[16]  Sharad Mehrotra,et al.  Similarity Search Using Multiple Examples in MARS , 1999, VISUAL.

[17]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[18]  Thomas S. Huang,et al.  Supporting Ranked Boolean Similarity Queries in MARS , 1998, IEEE Trans. Knowl. Data Eng..

[19]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[20]  Rakesh Agrawal,et al.  A framework for expressing and combining preferences , 2000, SIGMOD '00.

[21]  Amihai Motro FLEX: A Tolerant and Cooperative User Interface to Databases , 1990, IEEE Trans. Knowl. Data Eng..

[22]  Tom Minka,et al.  Interactive learning with a "Society of Models" , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[24]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[25]  V. S. Subrahmanian,et al.  A multi-similarity algebra , 1998, SIGMOD '98.

[26]  Christos Faloutsos,et al.  FALCON: Feedback Adaptive Loop for Content-Based Retrieval , 2000, VLDB.

[27]  Rosalind W. Picard,et al.  Interactive Learning Using a "Society of Models" , 2017, CVPR 1996.

[28]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[29]  Shih-Fu Chang,et al.  Finding Images/Video in Large Archives: Columbia's Content-Based Visual Query Project , 1997, D Lib Mag..

[30]  Norbert Fuhr Logical and Conceptual Models for the Integration of Information Retrieval and Database Systems , 1994, East/West Database Workshop.

[31]  Amihai Motro,et al.  VAGUE: a user interface to relational databases that permits vague queries , 1988, TOIS.

[32]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[33]  W. Bruce Croft,et al.  The INQUERY Retrieval System , 1992, DEXA.