Structure of the covalent adduct formed between Mycobacterium tuberculosis beta-lactamase and clavulanate.

The intrinsic resistance of Mycobacterium tuberculosis to the beta-lactam class of antibiotics arises from a chromosomally encoded, extended spectrum, class A beta-lactamase, BlaC. Herein, we report the X-ray crystallographic structure of BlaC inhibited with clavulanate at a resolution of 1.7 A with an R-factor value of 0.180 and R-free value of 0.212 for the m/ z +154 clavulanate-derived fragment observed in the active site. Structural evidence reveals the presence of hydrogen bonds to the C1 carbonyl along with a coplanar arrangement of C1, C2, C3, and N4, which favors enolization to generate a trans-alpha,beta-eneamine, stabilizing the +154 adduct from hydrolysis. The irreversible inhibition of BlaC suggests that treatment of M. tuberculosis with a combination of a beta-lactam antibiotic and clavulanate may lead to rapid bactericidal activity.

[1]  J. Blanchard,et al.  Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. , 2007, Biochemistry.

[2]  Feng Wang,et al.  Crystal Structure and Activity Studies of the Mycobacterium tuberculosis β-Lactamase Reveal Its Critical Role in Resistance to β-Lactam Antibiotics , 2006, Antimicrobial Agents and Chemotherapy.

[3]  Samy O Meroueh,et al.  Ab initio QM/MM study of class A beta-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70. , 2005, Journal of the American Chemical Society.

[4]  R. Bonomo,et al.  High Resolution Crystal Structures of the trans-Enamine Intermediates Formed by Sulbactam and Clavulanic Acid and E166A SHV-1 β-Lactamase* , 2005, Journal of Biological Chemistry.

[5]  M. Pavelka,et al.  Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics , 2005 .

[6]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[7]  R. Bonomo,et al.  Clavulanic acid inactivation of SHV-1 and the inhibitor-resistant S130G SHV-1 beta-lactamase. Insights into the mechanism of inhibition. , 2004, The Journal of biological chemistry.

[8]  Peter Briggs,et al.  A graphical user interface to the CCP4 program suite. , 2003, Acta crystallographica. Section D, Biological crystallography.

[9]  J Navaza,et al.  Implementation of molecular replacement in AMoRe. , 2001, Acta crystallographica. Section D, Biological crystallography.

[10]  J. Ghuysen,et al.  Multimodular Penicillin-Binding Proteins: An Enigmatic Family of Orthologs and Paralogs , 1998, Microbiology and Molecular Biology Reviews.

[11]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[12]  P. Hopewell,et al.  Activity of amoxicillin/clavulanate in patients with tuberculosis. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[13]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[14]  C. Schofield,et al.  Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. , 1996, Biochemistry.

[15]  J. Frère,et al.  The catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Fink,et al.  Site-directed mutagenesis of glutamate-166 in beta-lactamase leads to a branched path mechanism. , 1994, Biochemistry.

[17]  O. Herzberg,et al.  Inhibition of β-lactamase by clavulanate , 1992 .

[18]  J. Berger,et al.  Amoxicillin-clavulanic acid for treating drug-resistant Mycobacterium tuberculosis. , 1991, Chest.

[19]  H. Matsuzawa,et al.  Site-directed mutants, at position 166, of RTEM-1 beta-lactamase that form a stable acyl-enzyme intermediate with penicillin. , 1991, The Journal of biological chemistry.

[20]  S. G. Waley,et al.  Site-directed mutagenesis of beta-lactamase I. Single and double mutants of Glu-166 and Lys-73. , 1990, The Biochemical journal.

[21]  M. Cynamon,et al.  In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis , 1983, Antimicrobial Agents and Chemotherapy.

[22]  L. Tanoue Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa , 2008 .

[23]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[24]  K. Wilson,et al.  Efficient anisotropic refinement of macromolecular structures using FFT. , 1999, Acta crystallographica. Section D, Biological crystallography.

[25]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[26]  J. Knowles,et al.  Kinetic studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid. , 1978, Biochemistry.