An energy analysis of IEEE 802.15.6 scheduled access modes

Body Area Networks (BANs) are an emerging area of wireless personal communications. The IEEE 802.15.6 working group aims to develop a communications standard optimised for low power devices operating on, in or around the human body. IEEE 802.15.6 specifically targets low power medical application areas. The IEEE 802.15.6 draft defines two main channel access modes; contention based and contention free. This paper examines the energy lifetime performance of contention free access and in particular of periodic scheduled allocations. This paper presents an overview of the IEEE 802.15.6 and an analytical model for estimating the device lifetime. The analysis determines the maximum device lifetime for a range of scheduled allocations. It also shows that the higher the data rate of frame transfers the longer the device lifetime. Finally, the energy savings provided by block transfers are quantified and compared to immediately acknowledged alternatives.

[1]  Virtual Bridged,et al.  IEEE Standards for Local and Metropolitan Area Networks: Specification for 802.3 Full Duplex Operation , 1997, IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997 (Supplement to ISO/IEC 8802-3: 1996/ANSI/IEEE Std 802.3, 1996 Edition).

[2]  Kyung Sup Kwak,et al.  Throughput and delay limits of IEEE 802.15.6 , 2011, 2011 IEEE Wireless Communications and Networking Conference.

[3]  Norsheila Fisal,et al.  Performance Study of Wireless Body Area Network in Medical Environment , 2008, 2008 Second Asia International Conference on Modelling & Simulation (AMS).

[4]  Nick F. Timmons,et al.  Current characterisation for ultra low power wireless body area networks , 2010, 2010 8th Workshop on Intelligent Solutions in Embedded Systems.

[5]  Jelena V. Misic,et al.  Performance analysis of IEEE 802.15.6 under saturation condition and error-prone channel , 2011, 2011 IEEE Wireless Communications and Networking Conference.

[6]  Jim Morrison,et al.  An energy analysis of IEEE 802.15.6 scheduled access modes , 2010, 2010 IEEE Globecom Workshops.

[7]  William G. Scanlon,et al.  Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..