Gear formalism of the always stable predictor-corrector method for molecular dynamics of polarizable molecules.

The recently proposed always stable predictor-corrector method for molecular dynamics of polarizable molecules [J. Kolafa, J. Comput. Chem. 25, 335 (2004)] is rewritten in the Gear formalism. This equivalent form simplifies an implementation if the Newton equations of motion are integrated by the Gear method and also enables a variable integration step. Algorithms are presented for both the original and new versions and tested on a pair of polarizable ions exhibiting anharmonic vibrations.

[1]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[2]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[3]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[4]  Jií Kolafa,et al.  Time‐reversible always stable predictor–corrector method for molecular dynamics of polarizable molecules , 2004, J. Comput. Chem..

[5]  D. Remler,et al.  Molecular dynamics without effective potentials via the Car-Parrinello approach , 1990 .

[6]  S J Wodak,et al.  Calculations of electrostatic properties in proteins. Analysis of contributions from induced protein dipoles. , 1987, Journal of molecular biology.

[7]  Giancarlo Ruocco,et al.  Computer simulation of polarizable fluids: a consistent and fast way for dealing with polarizability and hyperpolarizability , 1994 .

[8]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[9]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[10]  Michiel Sprik,et al.  Hydrogen bonding and the static dielectric constant in liquid water , 1991 .

[11]  Molecular dynamics of potential models with polarizability: comparison of methods , 2004 .

[12]  Berend Smit,et al.  Accelerating Monte Carlo Sampling , 2002 .

[13]  Jiří Kolafa Numerical Integration of Equations of Motion with a Self-Consistent Field given by an Implicit Equation , 1996 .

[14]  G. N. Patey,et al.  Static dielectric properties of polarizable Stockmayer fluids , 1981 .

[15]  Franz J. Vesely,et al.  N-particle dynamics of polarizable Stockmayer-type molecules , 1977 .