Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise

There has been considerable recent work on the development of energy conserving one-step methods that are not symplectic. Here we extend these ideas to stochastic Hamiltonian problems with additive noise and show that there are classes of Runge-Kutta methods that are very effective in preserving the expectation of the Hamiltonian, but care has to be taken in how the Wiener increments are sampled at each timestep. Some numerical simulations illustrate the performance of these methods.

[1]  L. Brugnano,et al.  A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..

[2]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[3]  M. Crouzeix Sur laB-stabilité des méthodes de Runge-Kutta , 1979 .

[4]  Donato Trigiante,et al.  Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems , 2009, Commun. Nonlinear Sci. Numer. Simul..

[5]  L. Brugnano,et al.  Analysis of Hamiltonian Boundary Value Methods (HBVMs) , 2015 .

[6]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods ( Energy Preserving Discrete Line Integral Methods ) 1 2 , 2009 .

[7]  Kevin Burrage,et al.  Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.

[8]  Donato Trigiante,et al.  A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..

[9]  Christian Soize Exact steady-state solution of FKP equation in higher dimension for a class of non linear Hamiltonian dissipative dynamical systems excited by Gaussian white noise , 1995 .

[10]  Kevin Burrage,et al.  Numerical Methods for Second-Order Stochastic Differential Equations , 2007, SIAM J. Sci. Comput..

[11]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[12]  William Kahan,et al.  Unconventional Schemes for a Class of Ordinary Differential Equations-With Applications to the Korteweg-de Vries Equation , 1997 .

[13]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[14]  Desmond J. Higham,et al.  Numerical simulation of a linear stochastic oscillator with additive noise , 2004 .

[15]  Paul Krée,et al.  Probabilistic Methods in Applied Physics , 1995 .

[16]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[17]  Ander Murua,et al.  An Algebraic Approach to Invariant Preserving Integators: The Case of Quadratic and Hamiltonian Invariants , 2006, Numerische Mathematik.

[18]  Kevin Burrage,et al.  Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise , 2012, J. Comput. Appl. Math..

[19]  Elena Celledoni,et al.  Geometric properties of Kahan's method , 2012, 1209.1164.

[20]  Donato Trigiante,et al.  The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity , 2010, Appl. Math. Comput..

[21]  K. Burrage,et al.  Stability Criteria for Implicit Runge–Kutta Methods , 1979 .

[22]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[23]  Henri Schurz,et al.  The Invariance of Asymptotic Laws of Linear Stochastic Systems under Discretization , 1999 .

[24]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[25]  Kevin Burrage,et al.  Accurate Stationary Densities with Partitioned Numerical Methods for Stochastic Differential Equations , 2009, SIAM J. Numer. Anal..

[26]  Ernst Hairer,et al.  Energy Conservation with Non-Symplectic Methods: Examples and Counter-Examples , 2004 .