Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise
暂无分享,去创建一个
[1] L. Brugnano,et al. A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..
[2] G. Quispel,et al. A new class of energy-preserving numerical integration methods , 2008 .
[3] M. Crouzeix. Sur laB-stabilité des méthodes de Runge-Kutta , 1979 .
[4] Donato Trigiante,et al. Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems , 2009, Commun. Nonlinear Sci. Numer. Simul..
[5] L. Brugnano,et al. Analysis of Hamiltonian Boundary Value Methods (HBVMs) , 2015 .
[6] L. Brugnano,et al. Hamiltonian Boundary Value Methods ( Energy Preserving Discrete Line Integral Methods ) 1 2 , 2009 .
[7] Kevin Burrage,et al. Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.
[8] Donato Trigiante,et al. A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..
[9] Christian Soize. Exact steady-state solution of FKP equation in higher dimension for a class of non linear Hamiltonian dissipative dynamical systems excited by Gaussian white noise , 1995 .
[10] Kevin Burrage,et al. Numerical Methods for Second-Order Stochastic Differential Equations , 2007, SIAM J. Sci. Comput..
[11] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[12] William Kahan,et al. Unconventional Schemes for a Class of Ordinary Differential Equations-With Applications to the Korteweg-de Vries Equation , 1997 .
[13] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[14] Desmond J. Higham,et al. Numerical simulation of a linear stochastic oscillator with additive noise , 2004 .
[15] Paul Krée,et al. Probabilistic Methods in Applied Physics , 1995 .
[16] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .
[17] Ander Murua,et al. An Algebraic Approach to Invariant Preserving Integators: The Case of Quadratic and Hamiltonian Invariants , 2006, Numerische Mathematik.
[18] Kevin Burrage,et al. Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise , 2012, J. Comput. Appl. Math..
[19] Elena Celledoni,et al. Geometric properties of Kahan's method , 2012, 1209.1164.
[20] Donato Trigiante,et al. The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity , 2010, Appl. Math. Comput..
[21] K. Burrage,et al. Stability Criteria for Implicit Runge–Kutta Methods , 1979 .
[22] Ernst Hairer,et al. The life-span of backward error analysis for numerical integrators , 1997 .
[23] Henri Schurz,et al. The Invariance of Asymptotic Laws of Linear Stochastic Systems under Discretization , 1999 .
[24] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[25] Kevin Burrage,et al. Accurate Stationary Densities with Partitioned Numerical Methods for Stochastic Differential Equations , 2009, SIAM J. Numer. Anal..
[26] Ernst Hairer,et al. Energy Conservation with Non-Symplectic Methods: Examples and Counter-Examples , 2004 .