Topology-Optimized Implants: Medical Requirements and Partial Aspects of a Design Engineering Process Chain

Establishing a process chain for designing topology-optimized implants requires the inclusion of discipline-specific design paths that may vary significantly when considered from a medical or an engineering point of view. Creating a joint design platform is viewed as an innovative approach. The objectives include efficient communication and transfer of results between engineers and medical professionals based on software-implemented interfaces. These include aspects of modeling for design, translation to the medical environment and the surgeon’s planning of the surgical procedure. Selected partial aspects of the developed design engineering process chain are presented based on project examples from the fields of vascular surgery and hip arthroplasty.

[1]  T D Cradduck,et al.  National electrical manufacturers association , 1983, Journal of the A.I.E.E..

[2]  Welf-Guntram Drossel,et al.  Repräsentation flexibler Implantate durch DICOM , 2010, CURAC.

[3]  D. Liang,et al.  Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. , 2005, International journal of cardiology.

[4]  A Meyer-Lindenberg,et al.  Strain adaptive bone remodelling: influence of the implantation technique. , 2008, Studies in health technology and informatics.

[5]  P J Prendergast,et al.  Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. , 2003, Journal of biomechanical engineering.

[6]  Nils Reimers,et al.  Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets , 2010, Medical Image Anal..

[7]  Oleg S. Pianykh,et al.  Digital Imaging and Communications in Medicine : A Practical Introduction and Survival Guide , 2008 .

[8]  Y. Fung,et al.  Pseudoelasticity of arteries and the choice of its mathematical expression. , 1979, The American journal of physiology.

[9]  G. Zeiler,et al.  Biomechanische Aspekte der Revisionsendoprothetik , 2005 .

[10]  Welf-Guntram Drossel,et al.  Study about possibilities for direct integration of piezo-fibers in sheet metal , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  G. Holzapfel,et al.  Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. , 2004, Journal of biomechanical engineering.

[12]  Gunther Reinhart,et al.  Research and Demonstration Center for the Production of Large-Area Lithium-Ion Cells , 2013 .

[13]  K.-D. Heller,et al.  Indikationen bei modularen Implantaten , 2005 .

[14]  Bernhard N. Tillmann,et al.  Atlas der Anatomie des Menschen , 2010 .

[15]  M. Viceconti,et al.  Mathematical relationships between bone density and mechanical properties: a literature review. , 2008, Clinical biomechanics.

[16]  Weiqiang Wang,et al.  Stent expansion in curved vessel and their interactions: a finite element analysis. , 2007, Journal of biomechanics.

[17]  M C Hobatho,et al.  Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties. , 1998, Journal of biomechanics.

[18]  F. Auricchio,et al.  Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall , 2004, Biomechanics and modeling in mechanobiology.

[19]  Reinhart Poprawe,et al.  Herstellung von Knochenimplantaten aus Titanwerkstoffen durch Laserformen , 2006 .

[20]  Welf-Guntram Drossel,et al.  Surgical stent planning: simulation parameter study for models based on DICOM standards , 2011, International Journal of Computer Assisted Radiology and Surgery.

[21]  R H Choplin,et al.  Picture archiving and communication systems: an overview. , 1992, Radiographics : a review publication of the Radiological Society of North America, Inc.

[22]  Raimund Forst,et al.  Analyse der periprothetischen femoralen Knochenreaktion nach zementfreier Hüftendoprothetik mittels computertomographiegestützter Osteodensitometrie in vivo: 6-Jahres-Follow-up / Analysis of the periprosthetic femoral bone reaction after uncemented total hip arthroplasty with computertomography assi , 2006 .

[23]  R. B. Ashman,et al.  Relations of mechanical properties to density and CT numbers in human bone. , 1995, Medical engineering & physics.

[24]  Walter H. Reinhart Kompendium evidenzbasierte Medizin , 2008 .

[25]  R Neugebauer,et al.  Experimental modal analysis on fresh-frozen human hemipelvic bones employing a 3D laser vibrometer for the purpose of modal parameter identification. , 2011, Journal of biomechanics.