Discrete Fourier Analysis, Cubature, and Interpolation on a Hexagon and a Triangle
暂无分享,去创建一个
Yuan Xu | Huiyuan Li | Jiachang Sun | Yuan Xu | Jiachang Sun | Hui-yuan Li
[1] T. Koornwinder. Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .
[2] Mihail N. Kolountzakis. The Study of Translational Tiling with Fourier Analysis , 2004 .
[3] R. Marks. Introduction to Shannon Sampling and Interpolation Theory , 1990 .
[4] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[5] Brian J. McCartin,et al. Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem , 2003, SIAM Rev..
[6] Yuan Xu,et al. Orthogonal Polynomials of Several Variables , 2014, 1701.02709.
[7] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[8] Huiyuan Li,et al. Generalized Fourier transform on an arbitrary triangular domain , 2005, Adv. Comput. Math..
[9] A.K. Krishnamurthy,et al. Multidimensional digital signal processing , 1985, Proceedings of the IEEE.
[10] Tom H. Koornwinder,et al. Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III , 1974 .
[11] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[12] T. J. Rivlin. An Introduction to the Approximation of Functions , 2003 .
[13] P. Heywood. Trigonometric Series , 1968, Nature.
[14] Jia-changSun. MULTIVARIATE FOURIER SERIES OVER A CLASS OF NON TENSOR-PRODUCT PARTITION DOMAINS , 2003 .
[15] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[16] Yuan Xu. Polynomial interpolation in several variables, cubature formulae, and ideals[*]Supported by the National Science Foundation under Grant DMS-9802265. , 2000, Adv. Comput. Math..
[17] Mark A. Pinsky,et al. Completeness of the Eigenfunctions of the Equilateral Triangle , 1985 .
[18] Wolfgang Ebeling,et al. Lattices and Codes: A Course Partially Based on Lectures by Friedrich Hirzebruch , 1994 .
[19] Bent Fuglede,et al. Commuting self-adjoint partial differential operators and a group theoretic problem , 1974 .
[20] Brian J. McCartin,et al. Eigenstructure of the equilateral triangle , 2003 .
[21] Ian H. Sloan,et al. Multiple integration over bounded and unbounded regions , 1987 .
[22] Brian J. McCartin,et al. Eigenstructure of the equilateral triangle, Part II: The Neumann problem , 2002 .
[23] R. L. Stens,et al. Sampling theory in Fourier and signal analysis : advanced topics , 1999 .
[24] J. R. Higgins. Sampling theory in Fourier and signal analysis : foundations , 1996 .
[25] Mark A. Pinsky,et al. The Eigenvalues of an Equilateral Triangle , 1980 .
[26] Yuan Xu,et al. On bivariate Gaussian cubature formulae , 1994 .