Photobiomodulation for Global Cerebral Ischemia: Targeting Mitochondrial Dynamics and Functions

[1]  Yujiao Lu,et al.  From Mitochondrial Function to Neuroprotection—an Emerging Role for Methylene Blue , 2018, Molecular Neurobiology.

[2]  M. Berridge,et al.  Functional Mitochondria in Health and Disease , 2017, Front. Endocrinol..

[3]  Joel N Meyer,et al.  Mitochondrial fusion, fission, and mitochondrial toxicity. , 2017, Toxicology.

[4]  Xingshun Xu,et al.  Low-Level Laser Irradiation Improves Depression-Like Behaviors in Mice , 2016, Molecular Neurobiology.

[5]  P. Shanmugam,et al.  Mitochondrial dysfunction – Silent killer in cerebral ischemia , 2017, Journal of the Neurological Sciences.

[6]  J. C. Torre,et al.  Treating cognitive impairment with transcranial low level laser therapy. , 2017, Journal of photochemistry and photobiology. B, Biology.

[7]  Ling-Ling Zhu,et al.  Low-level laser therapy for beta amyloid toxicity in rat hippocampus , 2017, Neurobiology of Aging.

[8]  Yifan Chen,et al.  Post-ischemia mdivi-1 treatment protects against ischemia/reperfusion-induced brain injury in a rat model , 2016, Neuroscience Letters.

[9]  T. Sanderson,et al.  Mitochondrial dynamics following global cerebral ischemia , 2016, Molecular and Cellular Neuroscience.

[10]  Donovan Tucker,et al.  Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia , 2016, Molecular Neurobiology.

[11]  R. Pluta,et al.  Brain ischemia with Alzheimer phenotype dysregulates Alzheimer’s disease-related proteins , 2016, Pharmacological reports : PR.

[12]  Prashant Mishra,et al.  Metabolic regulation of mitochondrial dynamics , 2016, The Journal of cell biology.

[13]  H. Koh,et al.  Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells. , 2015, Neurotoxicology.

[14]  Yidong Chen,et al.  Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain , 2015, Proceedings of the National Academy of Sciences.

[15]  Fang Yang,et al.  Cell-Permeable Peptide Targeting the Nrf2–Keap1 Interaction: A Potential Novel Therapy for Global Cerebral Ischemia , 2015, The Journal of Neuroscience.

[16]  W. Sharp Dynamin-related protein 1 as a therapeutic target in cardiac arrest , 2015, Journal of Molecular Medicine.

[17]  S. Gibson,et al.  BNIP3 Interacting with LC3 Triggers Excessive Mitophagy in Delayed Neuronal Death in Stroke , 2014, CNS neuroscience & therapeutics.

[18]  Majaz Moonis,et al.  Transcranial Laser Therapy in Acute Stroke Treatment: Results of Neurothera Effectiveness and Safety Trial 3, a Phase III Clinical End Point Device Trial , 2014, Stroke.

[19]  S. Levine,et al.  NeuroThera Effectiveness and Safety Trial 3: how do we align corporate and scientific integrity to complete and report pharma-sponsored trials properly? , 2014, Stroke.

[20]  Michael R Hamblin,et al.  Pre-Conditioning with Low-Level Laser (Light) Therapy: Light before the Storm , 2014, Dose-response : a publication of International Hormesis Society.

[21]  M. Won,et al.  Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils , 2014, Anatomy & cell biology.

[22]  Michael R. Hamblin,et al.  Low‐level laser therapy (810 nm) protects primary cortical neurons against excitotoxicity in vitro , 2014, Journal of biophotonics.

[23]  Min Wang,et al.  Mdivi-1 prevents apoptosis induced by ischemia-reperfusion injury in primary hippocampal cells via inhibition of reactive oxygen species-activated mitochondrial pathway. , 2014, Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association.

[24]  R. Vadlamudi,et al.  Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus , 2014, Molecular and Cellular Endocrinology.

[25]  F. Gonzalez-Lima,et al.  Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. , 2014, Biochemical pharmacology.

[26]  E. Lo,et al.  Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation , 2014, Metabolic Brain Disease.

[27]  Dong-Sun Han,et al.  Hypersensitivity of the hippocampal CA3 region to stress-induced neurodegeneration and amyloidogenesis in a rat model of surgical menopause. , 2013, Brain : a journal of neurology.

[28]  S. Imai,et al.  The dynamic regulation of NAD metabolism in mitochondria , 2012, Trends in Endocrinology & Metabolism.

[29]  C. Callaway,et al.  Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms?: A systematic review and meta-analysis of randomized and non-randomized studies. , 2012, Resuscitation.

[30]  Tianhong Dai,et al.  The Nuts and Bolts of Low-level Laser (Light) Therapy , 2011, Annals of Biomedical Engineering.

[31]  J. Herlitz,et al.  Hypothermia after cardiac arrest should be further evaluated--a systematic review of randomised trials with meta-analysis and trial sequential analysis. , 2011, International journal of cardiology.

[32]  Dong-Sun Han,et al.  C terminus of Hsc70-interacting protein (CHIP)-mediated degradation of hippocampal estrogen receptor-α and the critical period hypothesis of estrogen neuroprotection , 2011, Proceedings of the National Academy of Sciences.

[33]  L. Kaczmarek,et al.  Transient brain ischemia due to cardiac arrest causes irreversible long-lasting cognitive injury , 2011, Behavioural Brain Research.

[34]  P. Narasimhan,et al.  Nadph Oxidase Mediates Striatal Neuronal Injury after Transient Global Cerebral Ischemia , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[35]  D. Mozaffarian,et al.  Heart disease and stroke statistics--2011 update: a report from the American Heart Association. , 2011, Circulation.

[36]  Michael R Hamblin,et al.  Role of Low‐Level Laser Therapy in Neurorehabilitation , 2010, PM & R : the journal of injury, function, and rehabilitation.

[37]  Q. Wan,et al.  Preservation of GABAA Receptor Function by PTEN Inhibition Protects Against Neuronal Death in Ischemic Stroke , 2010, Stroke.

[38]  Dong-Sun Han,et al.  Estrogen Attenuates Ischemic Oxidative Damage via an Estrogen Receptor α-Mediated Inhibition of NADPH Oxidase Activation , 2009, The Journal of Neuroscience.

[39]  George Perry,et al.  The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease , 2009, Journal of neurochemistry.

[40]  D. Wade,et al.  Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. , 2009, Resuscitation.

[41]  Jackson Streeter,et al.  Safety Profile of Transcranial Near-Infrared Laser Therapy Administered in Combination With Thrombolytic Therapy to Embolized Rabbits , 2008, Stroke.

[42]  P. Bernardi,et al.  Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria , 2008, Proceedings of the National Academy of Sciences.

[43]  P. Cartron,et al.  Bax inserts into the mitochondrial outer membrane by different mechanisms , 2008, FEBS letters.

[44]  S. Strack,et al.  Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death , 2007, EMBO reports.

[45]  P. Lapchak,et al.  Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: An extended therapeutic window study using continuous and pulse frequency delivery modes , 2007, Neuroscience.

[46]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[47]  A. Bhardwaj,et al.  Mechanisms of brain injury after global cerebral ischemia. , 2006, Neurologic clinics.

[48]  C. Blackstone,et al.  Release of OPA1 during Apoptosis Participates in the Rapid and Complete Release of Cytochrome c and Subsequent Mitochondrial Fragmentation* , 2005, Journal of Biological Chemistry.

[49]  J. Borowitz,et al.  Enhancement of cyanide-induced mitochondrial dysfunction and cortical cell necrosis by uncoupling protein-2. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[50]  L. Scorrano,et al.  OPA1 requires mitofusin 1 to promote mitochondrial fusion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Chan Mitochondria and Neuronal Death/Survival Signaling Pathways in Cerebral Ischemia , 2004, Neurochemical Research.

[52]  P. Lapchak,et al.  Transcranial Infrared Laser Therapy Improves Clinical Rating Scores After Embolic Strokes in Rabbits , 2004, Stroke.

[53]  G. Lenaers,et al.  Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis* , 2003, The Journal of Biological Chemistry.

[54]  Jean-Claude Martinou,et al.  Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli , 2002, The Journal of cell biology.

[55]  T. Wieloch,et al.  Mitochondrial oxidative stress after global brain ischemia in rats , 2002, Neuroscience Letters.

[56]  A. M. van der Bliek,et al.  Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. , 2001, Molecular biology of the cell.

[57]  J. Shaw,et al.  The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast , 1999, Nature Cell Biology.

[58]  M. Kanchuger,et al.  Cerebral injury after cardiac surgery: identification of a group at extraordinary risk. Multicenter Study of Perioperative Ischemia Research Group (McSPI) and the Ischemia Research Education Foundation (IREF) Investigators. , 1999, Stroke.

[59]  P. Lipton,et al.  Ischemic cell death in brain neurons. , 1999, Physiological reviews.

[60]  R. Simon,et al.  Expression of the Apoptosis‐Effector Gene, Bax, Is Up‐Regulated in Vulnerable Hippocampal CA1 Neurons Following Global Ischemia , 1996, Journal of neurochemistry.

[61]  J. Walker,et al.  Factors associated with cognitive recovery after cardiopulmonary resuscitation. , 1996, American journal of critical care : an official publication, American Association of Critical-Care Nurses.

[62]  Y. Itoyama,et al.  Ischemic delayed neuronal death. A mitochondrial hypothesis. , 1995, Stroke.

[63]  J. Swain,et al.  Low-flow cardiopulmonary bypass and cerebral protection: a summary of investigations. , 1993, The Annals of thoracic surgery.

[64]  J. Brillman Central nervous system complications in coronary artery bypass graft surgery. , 1993, Neurologic clinics.

[65]  M. Kaste,et al.  Neuropsychological sequelae of cardiac arrest. , 1993, JAMA.

[66]  Takaaki Kirino,et al.  Delayed neuronal death in the gerbil hippocampus following ischemia , 1982, Brain Research.

[67]  Fred Plum,et al.  Temporal profile of neuronal damage in a model of transient forebrain ischemia , 1982, Annals of neurology.

[68]  William A. Perkins,et al.  SUMMARY OF INVESTIGATIONS , 1963 .

[69]  Yujiao Lu,et al.  Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease. , 2017, Journal of Alzheimer's disease : JAD.

[70]  P. Chan,et al.  Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. , 2010, Biochimica et biophysica acta.

[71]  T. Kirino,et al.  Selective vulnerability in the gerbil hippocampus following transient ischemia , 2004, Acta Neuropathologica.

[72]  A. Taraszewska,et al.  The pattern of irreversible brain changes after cardiac arrest in humans. , 2002, Folia neuropathologica.

[73]  V. Shabalin,et al.  [The role of the major histocompatibility complex antigens in the development of allergic diseases in the Korean population]. , 1991, Sovetskaia meditsina.