Improving generalization of MLPs with sliding mode control and the Levenberg-Marquardt algorithm
暂无分享,去创建一个
B. R. Menezes | Marcelo Azevedo Costa | Antônio de Pádua Braga | Benjamin Rodrigues de Menezes | A. Braga | M. Costa
[1] Hanif D. Sherali,et al. Linear Programming and Network Flows , 1977 .
[2] Elie Bienenstock,et al. Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.
[3] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[4] Ricardo H. C. Takahashi,et al. Improving generalization of MLPs with multi-objective optimization , 2000, Neurocomputing.
[5] Antônio de Pádua Braga,et al. Training neural networks with a multi-objective sliding mode control algorithm , 2003, Neurocomputing.
[6] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[7] Peter L. Bartlett,et al. For Valid Generalization the Size of the Weights is More Important than the Size of the Network , 1996, NIPS.
[8] David E. Rumelhart,et al. Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..
[9] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[10] Russell Reed,et al. Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.
[11] Mohammad Bagher Menhaj,et al. Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.
[12] Antônio de Pádua Braga,et al. Neural Networks Learning with Sliding Mode Control: The Sliding Mode Backpropagation Algorithm , 1999, Int. J. Neural Syst..