Flexible cycle embedding in the locally twisted cube with nodes positioned at any prescribed distance

Abstract A Hamiltonian graph G is panpositionably Hamiltonian if for any two distinct vertices x and y of G , it contains a Hamiltonian cycle C such that d C ( x ,  y ) =  l for any integer l satisfying d G ( x ,  y ) ⩽  l  ⩽ ⌈∣ V ( G )∣/2⌉, where d G ( x ,  y ) (respectively, d C ( x ,  y )) denotes the distance between vertices x and y in G (respectively, on C ), and ∣ V ( G )∣ is the total number of vertices in G . As the importance of Hamiltonian properties for data communication between units in parallel and distributed systems, the panpositionable Hamiltonicity involves more flexible cycle embedding for message transmission. This paper shows that for two arbitrary nodes x and y of the n -dimensional locally twisted cube LTQ n , n  ⩾ 4, and for any integer l  ∈ { d } ∪ { d  + 2, d  + 3, d  + 4, … , 2 n −1 }, where d = d LTQ n ( x , y ) , there exists a Hamiltonian cycle C of LTQ n such that d C ( x ,  y ) =  l .

[1]  Sheshayya A. Choudum,et al.  Augmented cubes , 2002, Networks.

[2]  Fan Jian BC Interconnection Networks and Their Properties , 2003 .

[3]  P. S. Nagendra Rao,et al.  A class of hypercube-like networks , 1993, Proceedings of 1993 5th IEEE Symposium on Parallel and Distributed Processing.

[4]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[5]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[6]  Krishnan Padmanabhan,et al.  the Twisted Cube Topology for Multiprocessors: A Study in Network Asymmetry , 1991, J. Parallel Distributed Comput..

[7]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[8]  Hyeong-Seok Lim,et al.  Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements , 2006, IEEE Transactions on Parallel and Distributed Systems.

[9]  David J. Evans,et al.  The locally twisted cubes , 2005, Int. J. Comput. Math..

[10]  Jun-Ming Xu,et al.  Panconnectivity of locally twisted cubes , 2006, Appl. Math. Lett..

[11]  Sun-Yuan Hsieh,et al.  Constructing edge-disjoint spanning trees in locally twisted cubes , 2009, Theor. Comput. Sci..

[12]  Shi-Jinn Horng,et al.  Geodesic-pancyclicity and fault-tolerant panconnectivity of augmented cubes , 2009, Appl. Math. Comput..

[13]  Jimmy J. M. Tan,et al.  Panpositionable hamiltonicity of the alternating group graphs , 2007 .

[14]  David J. Evans,et al.  Locally twisted cubes are 4-pancyclic , 2004, Appl. Math. Lett..

[15]  Jianxi Fan,et al.  Embedding meshes into locally twisted cubes , 2010, Inf. Sci..

[16]  J. E. Williamson Panconnected graphs II , 1977 .

[17]  Jimmy J. M. Tan,et al.  Panpositionable hamiltonicity and panconnectivity of the arrangement graphs , 2008, Appl. Math. Comput..

[18]  Sun-Yuan Hsieh,et al.  Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults , 2010, J. Comb. Optim..

[19]  Stefan Schmid,et al.  A Self-repairing Peer-to-Peer System Resilient to Dynamic Adversarial Churn , 2005, IPTPS.

[20]  Jung-Heum Park,et al.  Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements , 2007, Theor. Comput. Sci..

[21]  Kemal Efe A Variation on the Hypercube with Lower Diameter , 1991, IEEE Trans. Computers.

[22]  Xiaohua Jia,et al.  Node-pancyclicity and edge-pancyclicity of crossed cubes , 2005, Inf. Process. Lett..

[23]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[24]  Eli Upfal,et al.  The token distribution problem , 1989, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[25]  Jun-Ming Xu,et al.  Weakly Edge-Pancyclicity of Locally Twisted Cubes , 2008, Ars Comb..

[26]  Cheng-Kuan Lin,et al.  Graph Theory and Interconnection Networks , 2008 .

[27]  Cheng-Kuan Lin,et al.  Panpositionable Hamiltonian Graphs , 2006, Ars Comb..

[28]  Cheng-Kuan Lin,et al.  On the bipanpositionable bipanconnectedness of hypercubes , 2009, Theor. Comput. Sci..

[29]  Lih-Hsing Hsu,et al.  Hyper-Panconnectedness of the Locally Twisted Cube , 2011 .

[30]  Lih-Hsing Hsu,et al.  The panpositionable panconnectedness of augmented cubes , 2010, Inf. Sci..

[31]  Ruo-Wei Hung,et al.  Embedding two edge-disjoint Hamiltonian cycles into locally twisted cubes , 2011, Theor. Comput. Sci..