Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface

Many industrial laser processes, such as surface cleaning, require the removal of small thicknesses of matter, often on large samples. An experimental study has been performed in order to characterize and enhance the ablation of materials by means of the interaction between a pulsed laser beam and matter using common industrial laser sources, particularly at 248, 308, 532, and 1064 nm. Ablation was achieved on a static sample with one or several successive pulses and for different energy densities. These parameters enabled us to control the depth of the ablation in the micrometer range. Experiments have been carried out in ambient air, under gaseous cover, and then under a flowing water film on the material surface at atmospheric pressure. The material was a stainless‐steel alloy. The experiments made it possible to determine the ablation fluence threshold for each wavelength and the alteration of the surface by the successive laser pulses. In order to avoid oxidation during the process, an argon gaseous ...