Genome engineering reveals large dispensable regions in Bacillus subtilis.

Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing ecological niches. Notably, approximately 47% of the approximately 4,100 genes of B. subtilis belong to paralogous gene families in which several members have overlapping functions. Thus, essential gene functions will outnumber essential genes. To answer the question to what extent the most recently acquired DNA contributes to the life of B. subtilis under standard laboratory growth conditions, we initiated a "reconstruction" of the B. subtilis genome by removing prophages and AT-rich islands. Stepwise deletion of two prophages (SPbeta, PBSX), three prophage-like regions, and the largest operon of B. subtilis (pks) resulted in a genome reduction of 7.7% and elimination of 332 genes. The resulting strain was phenotypically characterized by metabolic flux analysis, proteomics, and specific assays for protein secretion, competence development, sporulation, and cell motility. We show that genome engineering is a feasible strategy for functional analysis of large gene clusters, and that removal of dispensable genomic regions may pave the way toward an optimized Bacillus cell factory.

[1]  N. Vasantha,et al.  CLONING OF A SERINE PROTEASE GENE FROM BACILLUS AMYLOLIQUEFACIENS AND ITS EXPRESSION IN BACILLUS SUBTILIS , 1984 .

[2]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in bacterial and archaeal complete genomes. , 2000, Genome research.

[3]  K. Devine,et al.  The phage-like element PBSX and part of the skin element, which are resident at different locations on the Bacillus subtilis chromosome, are highly homologous. , 1996, Microbiology.

[4]  N. Minton,et al.  Physical characterisation of the replication region of the Streptococcus faecalis plasmid pAM beta 1. , 1990, Gene.

[5]  S. Ehrlich,et al.  High-efficiency gene inactivation and replacement system for gram-positive bacteria , 1993, Journal of bacteriology.

[6]  I. Moszer The complete genome of Bacillus subtilis: from sequence annotation to data management and analysis , 1998, FEBS letters.

[7]  U. Sauer,et al.  GC‐MS Analysis of Amino Acids Rapidly Provides Rich Information for Isotopomer Balancing , 2000, Biotechnology progress.

[8]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[9]  Arnold L. Demain,et al.  Manual of Industrial Microbiology and Biotechnology , 1986 .

[10]  E. Chernetsova,et al.  Comparison of silylation and esterification/acylation procedures in GC‐MS analysis of amino acids , 2003 .

[11]  C. J. McGrath,et al.  Effect of exchange rate return on volatility spill-over across trading regions , 2012 .

[12]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[13]  S. Bron,et al.  Ultraviolet inactivation and excision-repair in Bacillus subtilis. I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives. , 1972, Mutation research.

[14]  Anne de Jong,et al.  Protein transport pathways in Bacillus subtilis: a genome-based road map , 2001 .

[15]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[16]  C. Colson,et al.  Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. , 1993, European journal of biochemistry.

[17]  J. Errington,et al.  Transcriptional regulation and structure of the Bacillus subtilis sporulation locus spoIIIC , 1988, Journal of bacteriology.

[18]  S. Bron,et al.  A novel two‐component regulatory system in Bacillus subtilis for the survival of severe secretion stress , 2001, Molecular microbiology.

[19]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[20]  M. Perego Integrational Vectors for Genetic Manipulation in Bacillus subtilis , 1993 .

[21]  D. Dubnau,et al.  Plasmid copy number control: isolation and characterization of high-copy-number mutants of plasmid pE194 , 1979, Journal of bacteriology.

[22]  T. Sato,et al.  Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. , 1995, Microbiology.

[23]  U. Sauer,et al.  Metabolic fluxes in riboflavin-producing Bacillus subtilis , 1997, Nature Biotechnology.

[24]  S. Bron,et al.  Thiol-Disulfide Oxidoreductases Are Essential for the Production of the Lantibiotic Sublancin 168* , 2002, The Journal of Biological Chemistry.

[25]  G. Venema,et al.  A general system for generating unlabelled gene replacements in bacterial chromosomes , 1996, Molecular and General Genetics MGG.

[26]  S. Bron,et al.  The effect of restriction on shotgun cloning and plasmid stability in Bacillus subtilis Marburg , 1987, Molecular and General Genetics MGG.

[27]  A. Grossman,et al.  Coupling between gene expression and DNA synthesis early during development in Bacillus subtilis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Losick,et al.  Chromosomal rearrangement generating a composite gene for a developmental transcription factor. , 1989, Science.

[29]  S. Ho,et al.  Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. , 1989, Gene.

[30]  Gary M. Dunny,et al.  Cell-cell signaling in bacteria , 1999 .

[31]  R. Losick,et al.  The promoter for a sporulation gene in the spoIVC locus of Bacillus subtilis and its use in studies of temporal and spatial control of gene expression , 1988, Journal of bacteriology.

[32]  P. Piggot,et al.  Genetic aspects of bacterial endospore formation. , 1976, Bacteriological reviews.

[33]  S. Bron,et al.  Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Bacillus subtilis * , 1999, The Journal of Biological Chemistry.

[34]  I. Palva Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. , 1982, Gene.

[35]  J. Coppee,et al.  Genetic analysis and overexpression of lipolytic activity in Bacillus subtilis , 1994, Applied and environmental microbiology.

[36]  G. Rapoport,et al.  Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis , 1995, Journal of bacteriology.

[37]  Mark Albano,et al.  Microarray analysis of the Bacillus subtilis K‐state: genome‐wide expression changes dependent on ComK , 2002, Molecular microbiology.

[38]  S. Ehrlich,et al.  A vector for systematic gene inactivation in Bacillus subtilis. , 1998, Microbiology.

[39]  D. McConnell,et al.  Characterization of PBSX, a defective prophage of Bacillus subtilis , 1990, Journal of bacteriology.

[40]  P Guerdoux-Jamet,et al.  Implication of gene distribution in the bacterial chromosome for the bacterial cell factory. , 2000, Journal of biotechnology.

[41]  U. Sauer,et al.  Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis , 1996, Applied and environmental microbiology.

[42]  R. Losick,et al.  Sporulation Genes and Intercompartmental Regulation , 2002 .

[43]  A. Grossman,et al.  spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis , 1994, Journal of bacteriology.

[44]  Jan Maarten van Dijl,et al.  A Novel Class of Heat and Secretion Stress-Responsive Genes Is Controlled by the Autoregulated CssRS Two-Component System of Bacillus subtilis , 2002, Journal of bacteriology.

[45]  J. Kyhse-Andersen Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. , 1984, Journal of biochemical and biophysical methods.

[46]  A. Kuspa,et al.  Physical map of the Myxococcus xanthus chromosome , 1991, Journal of bacteriology.

[47]  A Danchin,et al.  Codon usage and lateral gene transfer in Bacillus subtilis. , 1999, Current opinion in microbiology.

[48]  Mitsuhiro Itaya,et al.  An estimation of minimal genome size required for life , 1995, FEBS letters.

[49]  Guy Plunkett,et al.  Engineering a reduced Escherichia coli genome. , 2002, Genome research.

[50]  P. Piggot,et al.  Identification and Characterization of thedif Site from Bacillus subtilis , 2001, Journal of bacteriology.

[51]  Jan Maarten van Dijl,et al.  A proteomic view on genome-based signal peptide predictions. , 2001, Genome research.

[52]  Frens Pries,et al.  Selective Contribution of the Twin-Arginine Translocation Pathway to Protein Secretion in Bacillus subtilis * , 2002, The Journal of Biological Chemistry.

[53]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Uwe Sauer,et al.  Bacillus subtilis Metabolism and Energetics in Carbon-Limited and Excess-Carbon Chemostat Culture , 2001, Journal of bacteriology.

[55]  J. Bernhardt,et al.  Dual channel imaging of two‐dimensional electropherograms in Bacillus subtilis , 1999, Electrophoresis.

[56]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[57]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[58]  A Danchin,et al.  Analysis of a Bacillus subtilis genome fragment using a co-operative computer system prototype. , 1995, Gene.

[59]  R. Rosenthal,et al.  Bacillus subtilis bacteriophage SPbeta: localization of the prophage attachment site, and specialized transduction , 1977, Journal of bacteriology.

[60]  S. Matsuoka,et al.  Molecular Organization of Intrinsic Restriction and Modification Genes BsuM of Bacillus subtilis Marburg , 2002, Journal of bacteriology.

[61]  A. Albertini,et al.  Sequence around the 159 ' region of the Bacillus subtilis genome : the pksX locus spans 33 . 6 kb , 2008 .

[62]  P. Zuber A peptide profile of the Bacillus subtilis genome , 2001, Peptides.

[63]  U. Sauer,et al.  Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. , 2003, European journal of biochemistry.

[64]  S. Bron Ultraviolet inactivation and excision-repair in bacillus subtilus , 1972 .

[65]  S. Bron,et al.  Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis. , 1991, Journal of general microbiology.