Thermal conductivity of group-IV semiconductors from a kinetic-collective model

The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon–phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range.

[1]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[2]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[3]  P. B. Allen Improved Callaway model for lattice thermal conductivity , 2013, 1308.3269.

[4]  P. Royer,et al.  Thermal conductivity of silicon bulk and nanowires: Effects of isotopic composition, phonon confinement, and surface roughness , 2010 .

[5]  W. Weber New Bond-Charge Model for the Lattice Dynamics of Diamond-Type Semiconductors , 1974 .

[6]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[7]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[8]  H. Casimir Note on the conduction of heat in crystals , 1938 .

[9]  J. Krumhansl Thermal conductivity of insulating crystals in the presence of normal processes , 1965 .

[10]  C. Herring Role of Low-Energy Phonons in Thermal Conduction , 1954 .

[11]  Robert A. Guyer,et al.  Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals , 1966 .

[12]  Francesco Mauri,et al.  Ab initio variational approach for evaluating lattice thermal conductivity , 2012, 1212.0470.

[13]  G. P. Srivastava,et al.  Temperature dependence of the thermal conductivity of different forms of diamond , 2007 .

[14]  J. Alvarez-Quintana,et al.  Analytical expression for thermal conductivity of superlattices , 2010 .

[15]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[16]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .

[17]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[18]  G. Nilsson,et al.  Study of the Homology between Silicon and Germanium by Thermal-Neutron Spectrometry , 1972 .

[19]  G. A. Slack,et al.  Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe , 1964 .

[20]  Julian D. Gale,et al.  An analytical model for the thermal conductivity of silicon nanostructures , 2005 .

[21]  David L. Price,et al.  Lattice Dynamics of Grey Tin and Indium Antimonide , 1971 .

[22]  A. Sellitto,et al.  Heat waves and phonon–wall collisions in nanowires , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  David Broido,et al.  Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .

[24]  Amelia Carolina Sparavigna,et al.  On the isotope effect in thermal conductivity of silicon , 2004 .

[25]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles , 2013 .

[26]  C. de Tomas,et al.  From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures , 2013, 1310.7127.

[27]  Zhuomin M. Zhang Nano/Microscale Heat Transfer , 2007 .

[28]  T. R. Anthony,et al.  Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. , 1992, Physical review letters.

[29]  William F. Banholzer,et al.  Thermal conductivity of isotopically modified single crystal diamond. , 1993 .

[30]  Eugene E. Haller,et al.  Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .

[31]  S. Tamura,et al.  Isotope scattering of dispersive phonons in Ge , 1983 .

[32]  Donald T. Morelli,et al.  Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .

[33]  J. Warren,et al.  Lattice Dynamics of Diamond , 1967 .