On the use of stochastic approximation Monte Carlo for Monte Carlo integration

[1]  Jun S. Liu,et al.  The Wang-Landau algorithm in general state spaces: Applications and convergence analysis , 2010 .

[2]  Faming Liang,et al.  Phylogenetic tree construction using sequential stochastic approximation Monte Carlo , 2008, Biosyst..

[3]  Faming Liang,et al.  Annealing stochastic approximation Monte Carlo algorithm for neural network training , 2007, Machine Learning.

[4]  Sooyoung Cheon Protein folding and phylogenetic tree reconstruction using stochastic approximation Monte Carlo , 2007 .

[5]  R. Carroll,et al.  Stochastic Approximation in Monte Carlo Computation , 2007 .

[6]  H. Robbins A Stochastic Approximation Method , 1951 .

[7]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[8]  Eric Moulines,et al.  Stability of Stochastic Approximation under Verifiable Conditions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[10]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[11]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[12]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[13]  W H Wong,et al.  Dynamic weighting in Monte Carlo and optimization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[15]  L. Wen,et al.  An extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains , 1996 .

[16]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[17]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[18]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[19]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[20]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[21]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[22]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  P. Billingsley,et al.  Probability and Measure , 1980 .

[24]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[25]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[26]  J. Doob Stochastic processes , 1953 .