The Combination and Evaluation of Query Performance Prediction Methods

In this paper, we examine a number of newly applied methods for combining pre-retrieval query performance predictors in order to obtain a better prediction of the query's performance. However, in order to adequately and appropriately compare such techniques, we critically examine the current evaluation methodology and show how using linear correlation coefficients (i) do not provide an intuitive measure indicative of a method's quality, (ii) can provide a misleading indication of performance, and (iii) overstate the performance of combined methods. To address this, we extend the current evaluation methodology to include cross validation, report a more intuitive and descriptive statistic, and apply statistical testing to determine significant differences. During the course of a comprehensive empirical study over several TREC collections, we evaluate nineteen pre-retrieval predictors and three combination methods.

[1]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[2]  Hugh E. Williams,et al.  Query association surrogates for Web search: Research Articles , 2004 .

[3]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[4]  Hugh E. Williams,et al.  Query association surrogates for Web search , 2004, J. Assoc. Inf. Sci. Technol..

[5]  Ellen M. Voorhees,et al.  Overview of the TREC 2004 Robust Retrieval Track , 2004 .

[6]  Francis R. Bach,et al.  Bolasso: model consistent Lasso estimation through the bootstrap , 2008, ICML '08.

[7]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[8]  Ingemar J. Cox,et al.  On ranking the effectiveness of searches , 2006, SIGIR.

[9]  Iadh Ounis,et al.  Inferring Query Performance Using Pre-retrieval Predictors , 2004, SPIRE.

[10]  Kam D. Dahlquist,et al.  Regression Approaches for Microarray Data Analysis , 2002, J. Comput. Biol..

[11]  W. Bruce Croft,et al.  Query performance prediction in web search environments , 2007, SIGIR.

[12]  Robert Krovetz,et al.  Viewing morphology as an inference process , 1993, Artif. Intell..

[13]  Peter Ingwersen,et al.  Developing a Test Collection for the Evaluation of Integrated Search , 2010, ECIR.

[14]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[15]  Xiao-Li Meng,et al.  Comparing correlated correlation coefficients , 1992 .

[16]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .

[17]  Falk Scholer,et al.  Effective Pre-retrieval Query Performance Prediction Using Similarity and Variability Evidence , 2008, ECIR.

[18]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[19]  Ted Pedersen,et al.  Extended Gloss Overlaps as a Measure of Semantic Relatedness , 2003, IJCAI.

[20]  Craig Macdonald,et al.  Predicting Query Performance in Intranet Search ∗ , 2005 .

[21]  M. Kendall Rank Correlation Methods , 1949 .

[22]  Ellen M. Voorhees,et al.  The Twelfth Text Retrieval Conference, TREC 2003 , 2004 .

[23]  M. de Rijke,et al.  Using Coherence-Based Measures to Predict Query Difficulty , 2008, ECIR.

[24]  Josiane Mothe,et al.  Linguistic features to predict query difficulty - a case study on previous TREC campaigns , 2005 .

[25]  W. Bruce Croft,et al.  Predicting query performance , 2002, SIGIR '02.

[26]  Wojciech Rytter,et al.  Extracting Powers and Periods in a String from Its Runs Structure , 2010, SPIRE.

[27]  C. Fellbaum An Electronic Lexical Database , 1998 .