2D mesoscale modeling of compressive fracture in concrete using a mesh fragmentation technique

[1]  J. D. Riera,et al.  Influence of contact friction in compression tests of concrete samples , 2022, Construction and Building Materials.

[2]  Chen Li,et al.  Analysis of Biaxial Mechanical Properties and Failure Criterion of Self-Compacting Concrete , 2021, Frontiers in Materials.

[3]  E. Benvenuti,et al.  Modeling mixed mode cracking in concrete through a regularized extended finite element formulation considering aggregate interlock , 2021, Engineering Fracture Mechanics.

[4]  Shiyun Xiao,et al.  Three-dimensional mesoscale modeling of concrete with convex aggregate based on motion simulation , 2021 .

[5]  Mingzhong Zhang,et al.  Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates , 2021, Cement and Concrete Research.

[6]  Ji-li Feng,et al.  Effect of coarse aggregate volume fraction on mode II fracture toughness of concrete , 2020 .

[7]  Yu Zheng,et al.  Mesoscale modeling of recycled aggregate concrete under uniaxial compression and tension using discrete element method , 2020 .

[8]  T. Forti,et al.  3D Mesoscale Finite Element Modelling of Concrete under Uniaxial Loadings , 2020, Materials.

[9]  Michael A. Maedo,et al.  2D Crack Propagation in High-Strength Concrete Using Multiscale Modeling , 2020, Multiscale Science and Engineering.

[10]  Luthfi Muhammad Mauludin,et al.  Computational modeling of fracture in concrete: A review , 2020 .

[11]  Vanissorn Vimonsatit,et al.  Mesoscale modelling of concrete – A review of geometry generation, placing algorithms, constitutive relations and applications , 2020 .

[12]  E. A. Rodrigues,et al.  3D concurrent multiscale model for crack propagation in concrete , 2020 .

[13]  Xueyu Xiong,et al.  Meso-Scale Simulation of Concrete Based on Fracture and Interaction Behavior , 2019, Applied Sciences.

[14]  Peng Cao,et al.  Experimental and numerical investigation on I–II mixed-mode fracture of concrete based on the Monte Carlo random aggregate distribution , 2018, Construction and Building Materials.

[15]  N. Shrive,et al.  Fracture of brittle and quasi-brittle materials in compression: A review of the current state of knowledge and a different approach , 2018, Theoretical and Applied Fracture Mechanics.

[16]  A. Caggiano,et al.  Virtual elements and zero thickness interface-based approach for fracture analysis of heterogeneous materials , 2018, Computer Methods in Applied Mechanics and Engineering.

[17]  Yong Lu,et al.  A mesoscale interface approach to modelling fractures in concrete for material investigation , 2018 .

[18]  Luís A.G. Bitencourt,et al.  An adaptive concurrent multiscale model for concrete based on coupling finite elements , 2018 .

[19]  Yong Lu,et al.  3D mesoscale finite element modelling of concrete , 2017 .

[20]  Di Wu,et al.  Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm , 2017 .

[21]  S. Demir,et al.  Experimental Determination of Cohesion and Internal Friction Angle on Conventional Concretes , 2017 .

[22]  Z. J. Yang,et al.  An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete , 2016 .

[23]  Luís A.G. Bitencourt,et al.  2D mesoscale model for concrete based on the use of interface element with a high aspect ratio , 2016 .

[24]  Osvaldo L. Manzoli,et al.  On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials , 2016 .

[25]  Luís A.G. Bitencourt,et al.  A modified implicit–explicit integration scheme: an application to elastoplasticity problems , 2016 .

[26]  J. Tejchman,et al.  Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray μCT images of internal structure , 2015 .

[27]  Ch. Zhang,et al.  Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete , 2015 .

[28]  C. Leung,et al.  Effect of Uniaxial Strength and Fracture Parameters of Concrete on Its Biaxial Compressive Strength , 2014 .

[29]  Iman M. Nikbin,et al.  Effect of coarse aggregate volume on fracture behavior of self compacting concrete , 2014 .

[30]  Jean-François Molinari,et al.  A meso-mechanical model for concrete under dynamic tensile and compressive loading , 2012, International Journal of Fracture.

[31]  A. Caggiano,et al.  Multiscale failure analysis of fiber reinforced concrete based on a discrete crack model , 2012, International Journal of Fracture.

[32]  Enzo Martinelli,et al.  Zero-thickness interface model formulation for failure behavior of fiber-reinforced cementitious composites , 2012 .

[33]  Osvaldo L. Manzoli,et al.  Modeling of interfaces in two-dimensional problems using solid finite elements with high aspect ratio , 2012 .

[34]  Adnan Ibrahimbegovic,et al.  Failure of heterogeneous materials: 3D meso‐scale FE models with embedded discontinuities , 2010 .

[35]  John E. Bolander,et al.  Explicit representation of physical processes in concrete fracture , 2009 .

[36]  Chuhan H. Zhang,et al.  A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete , 2008 .

[37]  P. Grassl,et al.  A damage-plasticity interface approach to the meso-scale modelling of concrete subjected to cyclic compressive loading , 2008 .

[38]  Xianglin Gu,et al.  Numerical Simulation of Failure Process of Concrete Under Compression Based on Mesoscopic Discrete Element Model , 2008 .

[39]  Antonio Aguado,et al.  Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior , 2008 .

[40]  Antonio Aguado,et al.  Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test , 2008 .

[41]  A. Huespe,et al.  An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems , 2008 .

[42]  Günther Meschke,et al.  Crack propagation criteria in the framework of X‐FEM‐based structural analyses , 2007 .

[43]  Ignacio Carol,et al.  3D meso-structural analysis of concrete specimens under uniaxial tension , 2006 .

[44]  Zdeněk P. Bažant,et al.  Confinement-shear lattice CSL model for fracture propagation in concrete , 2006 .

[45]  A. Huespe,et al.  A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM , 2006 .

[46]  P. Wriggers,et al.  Mesoscale models for concrete: homogenisation and damage behaviour , 2006 .

[47]  Ekkehard Ramm,et al.  A Microstructure-based Simulation Environment on the Basis of an Interface Enhanced Particle Model , 2006 .

[48]  Carsten Könke,et al.  Mesoscale modeling of concrete: Geometry and numerics , 2006 .

[49]  V. Slowik,et al.  Computer simulation of fracture processes of concrete using mesolevel models of lattice structures , 2004 .

[50]  M. Stavroulaki,et al.  A numerical investigation of the effect of the interfacial zone in concrete mixtures under uniaxial compression: The case of the dilute limit , 2000 .

[51]  M.R.A. van Vliet,et al.  Experimental investigation of concrete fracture under uniaxial compression , 1996 .

[52]  N. G. Shrive,et al.  Brittle fracture in compression: Mechanisms, models and criteria , 1995 .

[53]  M. Jirásek,et al.  Particle Model for Quasibrittle Fracture and Application to Sea Ice , 1995 .

[54]  Luc Taerwe,et al.  Random particle model for concrete based on Delaunay triangulation , 1993 .

[55]  M. Tabbara,et al.  RANDOM PARTICLE MODEL FOR FRACTURE OF AGGREGATE OR FIBER COMPOSITES , 1990 .

[56]  A. F. Stock,et al.  THE EFFECT OF AGGREGATE CONCENTRATION UPON THE STRENGTH AND MODULUS OF ELASTICITY OF CONCRETE , 1979 .

[57]  Upendra J. Counto Discussion: The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete* , 1964 .