Gravisensing: ionic responses, cytoskeleton and amyloplast behavior.

[1]  I. Wacker,et al.  Influence of the herbicide oryzalin on cytoskeleton and growth ofFunaria hygrometrica protonemata , 1988, Protoplasma.

[2]  F. Sack,et al.  Microtubule distribution in gravitropic protonemata of the mossCeratodon , 2005, Protoplasma.

[3]  J. Schiefelbein,et al.  Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana , 1992, Planta.

[4]  A. Leopold,et al.  Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles , 2004, Planta.

[5]  Elison B. Blancaflor,et al.  The Cytoskeleton and Gravitropism in Higher Plants , 2002, Journal of Plant Growth Regulation.

[6]  P. Masson,et al.  Arabidopsis thaliana: A Model for the Study of Root and Shoot Gravitropism , 2002, The arabidopsis book.

[7]  J. Rink,et al.  Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes. , 2001, Plant physiology.

[8]  E. Blancaflor,et al.  Demonstration of prominent actin filaments in the root columella , 2001, Planta.

[9]  L. Vidali,et al.  Polarized cell growth in higher plants. , 2001, Annual review of cell and developmental biology.

[10]  F. Baluška,et al.  Actin cytoskeleton in plants: From transport networks to signaling networks , 1999, Microscopy research and technique.

[11]  D M Porterfield,et al.  Self‐referencing, non‐invasive, ion selective electrode for single cell detection of trans‐plasma membrane calcium flux , 1999, Microscopy research and technique.

[12]  F. Sack,et al.  Irradiance-dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus , 1999, Planta.

[13]  E. Blancaflor,et al.  Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. , 1999, The Plant journal : for cell and molecular biology.

[14]  S. Wyatt,et al.  Growth dynamics and cytoskeleton organization during stem maturation and gravity-induced stem bending in Zea mays L. , 1998, Planta.

[15]  D. Bouchez,et al.  Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. , 1998, The Plant journal : for cell and molecular biology.

[16]  R. Ranjeva,et al.  Activation of plasma membrane voltage‐dependent calcium‐permeable channels by disruption of microtubules in carrot cells , 1996, FEBS letters.

[17]  D. Callaham,et al.  Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. , 1994, The Plant cell.

[18]  F. Sack,et al.  Microtubules restrict plastid sedimentation in protonemata of the moss Ceratodon. , 1994, Cell motility and the cytoskeleton.

[19]  A. Osbourn,et al.  Advances in Molecular Genetics of Plant-Microbe Interactions , 1994, Current Plant Science and Biotechnology in Agriculture.

[20]  L. C. Morejohn,et al.  Rapid and Reversible High-Affinity Binding of the Dinitroaniline Herbicide Oryzalin to Tubulin from Zea mays L , 1993, Plant physiology.

[21]  R. Cyr Calcium/Calmodulin Affects Microtubule Stability in Lysed Protoplasts , 1991 .

[22]  J. Doonan,et al.  Microtubules and microfilaments in tip growth: evidence that microtubules impose polarity on protonemal growth in Physcomitrella patens , 1988 .

[23]  D. Cove,et al.  Gravitropic responses of wild-type and mutant strains of the moss Physcomitrella patens. , 1986, Plant, cell & environment.

[24]  I. Spector,et al.  Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. , 1983, Science.