CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching

We explore the suitability of different feature detectors for the task of image registration, and in particular for visual odometry, using two criteria: stability (persistence across viewpoint change) and accuracy (consistent localization across viewpoint change). In addition to the now-standard SIFT, SURF, FAST, and Harris detectors, we introduce a suite of scale-invariant center-surround detectors (CenSurE) that outperform the other detectors, yet have better computational characteristics than other scale-space detectors, and are capable of real-time implementation.

[1]  Soo-Chang Pei,et al.  Design of FIR bilevel Laplacian-of-Gaussian filter , 2002, Signal Process..

[2]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[3]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[4]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[5]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[6]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[7]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[8]  Horst Bischof,et al.  Fast Approximated SIFT , 2006, ACCV.

[9]  Richard Szeliski,et al.  Vision Algorithms: Theory and Practice , 2002, Lecture Notes in Computer Science.

[10]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[11]  Kurt Konolige,et al.  Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[12]  Michel Dhome,et al.  Real Time Localization and 3D Reconstruction , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[14]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[15]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[16]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[17]  Cordelia Schmid,et al.  Indexing Based on Scale Invariant Interest Points , 2001, ICCV.

[18]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[20]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[21]  Dima Damen,et al.  Recognizing linked events: Searching the space of feasible explanations , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[23]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[24]  David Nister,et al.  Bundle Adjustment Rules , 2006 .

[25]  LindebergTony Feature Detection with Automatic Scale Selection , 1998 .

[26]  Shree K. Nayar,et al.  Computer Vision - ACCV 2006, 7th Asian Conference on Computer Vision, Hyderabad, India, January 13-16, 2006, Proceedings, Part I , 2006, ACCV.