The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature

One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen.

[1]  B. Simmons,et al.  A single-base resolution map of an archaeal transcriptome. , 2010, Genome research.

[2]  H. Schweizer,et al.  Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. , 2000, Plasmid.

[3]  D. Newman,et al.  Endogenous Phenazine Antibiotics Promote Anaerobic Survival of Pseudomonas aeruginosa via Extracellular Electron Transfer , 2009, Journal of bacteriology.

[4]  D. Hassett,et al.  The role of pyocyanin in Pseudomonas aeruginosa infection. , 2004, Trends in molecular medicine.

[5]  A. Hauser The type III secretion system of Pseudomonas aeruginosa: infection by injection , 2009, Nature Reviews Microbiology.

[6]  K. Tilly,et al.  Temperature-regulated expression of bacterial virulence genes. , 2000, Microbes and infection.

[7]  Martin Vingron,et al.  Ontologizer 2.0 - a multifunctional tool for GO term enrichment analysis and data exploration , 2008, Bioinform..

[8]  E. Greenberg,et al.  Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon , 2007, BMC Genomics.

[9]  E. Greenberg,et al.  A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[10]  R. Breinbauer,et al.  Of Two Make One: The Biosynthesis of Phenazines , 2009, Chembiochem : a European journal of chemical biology.

[11]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[12]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Sorek,et al.  Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity , 2010, Nature Reviews Genetics.

[14]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[15]  M. Cisz,et al.  ExoS Controls the Cell Contact-Mediated Switch to Effector Secretion in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[16]  Daniel G. Lee,et al.  The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Tringe,et al.  Validation of two ribosomal RNA removal methods for microbial metatranscriptomics , 2010, Nature Methods.

[18]  E. Westhof,et al.  A pH-responsive riboregulator. , 2009, Genes & development.

[19]  A. Oliver,et al.  High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2000, Science.

[20]  Erin K O'Shea,et al.  A high resolution map of a cyanobacterial transcriptome , 2011, Genome Biology.

[21]  J. Gordon,et al.  In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut , 2007, Proceedings of the National Academy of Sciences.

[22]  C. Dowson,et al.  Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology , 2008, Journal of applied microbiology.

[23]  M. Marceau Transcriptional regulation in Yersinia: an update. , 2005, Current issues in molecular biology.

[24]  J. Musser,et al.  Remodeling of the Streptococcus agalactiae Transcriptome in Response to Growth Temperature , 2008, PloS one.

[25]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[26]  C. Ouzounis,et al.  Transcription regulation and environmental adaptation in bacteria. , 2003, Trends in microbiology.

[27]  L. Thomashow,et al.  Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1 , 2001, Journal of bacteriology.

[28]  D. Newman,et al.  The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa , 2006, Molecular microbiology.

[29]  Jian Yang,et al.  VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors , 2011, Nucleic Acids Res..

[30]  E M Rubin,et al.  Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing , 2009, Proceedings of the National Academy of Sciences.

[31]  J. Emerson,et al.  Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos , 2009, Cellular microbiology.

[32]  Hanah Margalit,et al.  Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence , 2008, Nucleic acids research.

[33]  Nicholas J Loman,et al.  High-throughput sequencing and clinical microbiology: progress, opportunities and challenges. , 2010, Current opinion in microbiology.

[34]  Kristin Reiche,et al.  The primary transcriptome of the major human pathogen Helicobacter pylori , 2010, Nature.

[35]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[36]  M. Suyama,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.

[37]  H. Blöcker,et al.  Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. , 1986, Gene.

[38]  M. Fauvarque,et al.  Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. , 2002, Microbial pathogenesis.

[39]  D. Tollervey,et al.  The Many Pathways of RNA Degradation , 2009, Cell.

[40]  K. Wassarman Small RNAs in Bacteria Diverse Regulators of Gene Expression in Response to Environmental Changes , 2002, Cell.

[41]  D. Hassett,et al.  Pseudomonas aeruginosa Pyocyanin Is Critical for Lung Infection in Mice , 2004, Infection and Immunity.

[42]  Pascale Cossart,et al.  Comparative transcriptomics of pathogenic and non-pathogenic Listeria species , 2012, Molecular systems biology.

[43]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[44]  B. Palsson,et al.  Structural and operational complexity of the Geobacter sulfurreducens genome. , 2010, Genome research.

[45]  Stephen P. Diggle,et al.  Quorum Sensing and the Social Evolution of Bacterial Virulence , 2009, Current Biology.

[46]  J. Lee,et al.  Pseudomonas aeruginosa Infection of Zebrafish Involves both Host and Pathogen Determinants , 2009, Infection and Immunity.

[47]  F. Ausubel,et al.  Use of the Galleria mellonella Caterpillar as a Model Host To Study the Role of the Type III Secretion System in Pseudomonas aeruginosa Pathogenesis , 2003, Infection and Immunity.

[48]  J. Vogel,et al.  Two Seemingly Homologous Noncoding RNAs Act Hierarchically to Activate glmS mRNA Translation , 2008, PLoS biology.

[49]  M. Vergassola,et al.  The Listeria transcriptional landscape from saprophytism to virulence , 2009, Nature.

[50]  J. Hopkins,et al.  Effect of salt and RNA structure on annealing and strand displacement by Hfq , 2009, Nucleic acids research.

[51]  M. Schuster,et al.  Global position analysis of the Pseudomonas aeruginosa quorum‐sensing transcription factor LasR , 2009, Molecular microbiology.

[52]  J. Helden,et al.  Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules , 2008, Nature Protocols.

[53]  S. Lory,et al.  Quorum-Sensing Regulation of a Copper Toxicity System in Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[54]  A. Brooks,et al.  Microarray Analysis of Pseudomonas aeruginosa Quorum-Sensing Regulons: Effects of Growth Phase and Environment , 2003, Journal of bacteriology.

[55]  E. Sonnleitner,et al.  Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species , 2011, Applied Microbiology and Biotechnology.

[56]  Xuehong Zhang,et al.  Temperature-Dependent Expression of phzM and Its Regulatory Genes lasI and ptsP in Rhizosphere Isolate Pseudomonas sp. Strain M18 , 2009, Applied and Environmental Microbiology.

[57]  Karsten Zengler,et al.  The transcription unit architecture of the Escherichia coli genome , 2009, Nature Biotechnology.

[58]  G. Pier,et al.  Inescapable Need for Neutrophils as Mediators of Cellular Innate Immunity to Acute Pseudomonas aeruginosa Pneumonia , 2009, Infection and Immunity.

[59]  E. Wagner,et al.  The role of RNAs in the regulation of virulence-gene expression. , 2006, Current opinion in microbiology.

[60]  D. Wareham,et al.  The Pseudomonas aeruginosa PA14 type III secretion system is expressed but not essential to virulence in the Caenorhabditis elegans-P. aeruginosa pathogenicity model. , 2005, FEMS microbiology letters.

[61]  S. Gottesman,et al.  Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[63]  B. Iglewski,et al.  Regulation of the Pseudomonas aeruginosa Quorum-Sensing Regulator VqsR , 2007, Journal of bacteriology.

[64]  Vincent T. Lee,et al.  Outer Membrane Targeting of Pseudomonas aeruginosa Proteins Shows Variable Dependence on the Components of Bam and Lol Machineries , 2011, mBio.

[65]  F. Rojo,et al.  Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. , 1999, Environmental microbiology.

[66]  Qing Yang,et al.  Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  E. Greenberg,et al.  The Influence of Iron on Pseudomonas aeruginosa Physiology , 2008, Journal of Biological Chemistry.

[68]  M. Oh,et al.  Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[69]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[70]  S. Diggle,et al.  Quinolones: from Antibiotics to Autoinducers , 2022 .

[71]  S. Doucette,et al.  Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. , 2010, JAMA.

[72]  A. H. V. van Vliet Next generation sequencing of microbial transcriptomes: challenges and opportunities. , 2010, FEMS microbiology letters.

[73]  F. Ausubel,et al.  Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  B. Iglewski,et al.  The contribution of exoproducts to virulence of Pseudomonas aeruginosa. , 1986, Canadian journal of microbiology.

[75]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[76]  D. Hassett,et al.  Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. , 2009, The American journal of pathology.

[77]  Vincent T. Lee,et al.  Activities of Pseudomonas aeruginosa Effectors Secreted by the Type III Secretion System In Vitro and during Infection , 2005, Infection and Immunity.

[78]  Amy K. Schmid,et al.  Prevalence of transcription promoters within archaeal operons and coding sequences , 2009, Molecular systems biology.

[79]  Edgar Wingender,et al.  PRODORIC: prokaryotic database of gene regulation , 2003, Nucleic Acids Res..

[80]  Jörgen Johansson,et al.  RNAs: regulators of bacterial virulence , 2010, Nature Reviews Microbiology.

[81]  S. Kjelleberg,et al.  Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae , 2008, The ISME Journal.

[82]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[83]  C. Reimmann,et al.  Isochorismate Synthase (PchA), the First and Rate-limiting Enzyme in Salicylate Biosynthesis of Pseudomonas aeruginosa * , 2003, The Journal of Biological Chemistry.

[84]  P. Cossart,et al.  An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes , 2002, Cell.

[85]  D. Newman,et al.  Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition , 2011, Journal of bacteriology.

[86]  Araceli M. Huerta,et al.  Genome-Wide Identification of Transcription Start Sites, Promoters and Transcription Factor Binding Sites in E. coli , 2009, PloS one.

[87]  C. Pál,et al.  Adaptive evolution of bacterial metabolic networks by horizontal gene transfer , 2005, Nature Genetics.

[88]  J. Vogel,et al.  Regulatory RNA in bacterial pathogens. , 2010, Cell host & microbe.

[89]  D. Haas,et al.  Impact of quorum sensing on fitness of Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[90]  E. Greenberg,et al.  Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. , 2004, Proceedings of the National Academy of Sciences of the United States of America.