Ionic bonding of lanthanides, as influenced by d‐ and f‐atomic orbitals, by core–shells and by relativity

Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO‐coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen‐core approximations for Lu were compared: the (1s2–4d10) [Pd] medium core, the [Pd+5s25p6 = Xe] and [Pd+4f14] large cores, and the [Pd+4f14+5s25p6] very large core. The errors of LuX bonding are more serious on freezing the 5p6 shell than the 4f14 shell, more serious upon core‐freezing than on the effective‐core‐potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln3+‐5p6 and X−‐np6, characteristic for dominantly ionic Ln3+‐X− binding. The heavier halogen atoms also bind covalently with the Ln‐5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re, bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re∼BE∼k∼vs). The so‐called degeneracy‐driven covalence, meaning strong mixing of accidentally near‐degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

[1]  Zhong-Yuan Zhou,et al.  Metal-metal interactions in heterobimetallic d8-d10 complexes. Structures and spectroscopic investigation of [M'M' '(mu-dcpm)2(CN)2]+ (M' = Pt, Pd; M' ' = Cu, Ag, Au) and related complexes by UV-vis absorption and resonance Raman spectroscopy and ab initio calculations. , 2003, Journal of the American Chemical Society.

[2]  Jon K. Laerdahl,et al.  The performance of density functional theory for LnF (Ln=Nd, Eu, Gd, Yb) and YbH , 2003 .

[3]  Kenneth S. Pitzer,et al.  RELATIVISTIC EFFECTS ON CHEMICAL PROPERTIES , 1979 .

[4]  Giuseppe Lanza,et al.  A relativistic effective core potential ab initio study of molecular geometries and vibrational frequencies of lanthanide trihalides LnX3 (Ln = Gd, Lu; X = F, Cl) , 1996 .

[5]  Michael Dolg,et al.  Pseudopotentials and modelpotentials , 2011 .

[6]  Evert Jan Baerends,et al.  An LCAO HFS investigation of the electronic structure of cobaltocene , 1981 .

[7]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[8]  Arne Rosén,et al.  RELATIVISTIC CALCULATIONS OF ELECTRON BINDING ENERGIES BY A MODIFIED HARTREE--FOCK--SLATER METHOD. , 1968 .

[9]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[10]  Björn O. Roos,et al.  Analysing the chromium–chromium multiple bonds using multiconfigurational quantum chemistry , 2009 .

[11]  M. Hargittai,et al.  Molecular structure of metal halides. , 2000, Chemical reviews.

[12]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[13]  Michael Dolg,et al.  A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds , 1993 .

[14]  Carlo Adamo,et al.  Performance of the `parameter free' PBE0 functional for the modeling of molecular properties of heavy metals , 2000 .

[15]  J. Meister,et al.  PRINCIPAL COMPONENTS OF IONICITY , 1994 .

[16]  Notker Rösch,et al.  The DFT + U method in the linear combination of Gaussian-type orbitals framework: Role of 4f orbitals in the bonding of LuF3 , 2009 .

[17]  Michael Dolg,et al.  Pseudopotential Study on Rare Earth Dihalides and Trihalides , 1991 .

[18]  M. Reiher,et al.  Reparameterization of hybrid functionals based on energy differences of states of different multiplicity , 2001 .

[19]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[20]  Michael Dolg,et al.  Energy-adjusted pseudopotentials for the rare earth elements , 1989 .

[21]  Bruce E. Bursten,et al.  The Electronic Structure of Actinide-Containing Molecules: A Challenge to Applied Quantum Chemistry , 1991 .

[22]  Carlo Adamo,et al.  Ionic versus covalent character in lanthanide complexes. A hybrid density functional study , 1997 .

[23]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[24]  Riccardo Spezia,et al.  Electronic structure and bonding of lanthanoid(III) carbonates. , 2012, Physical chemistry chemical physics : PCCP.

[25]  P. Pyykkö Relativistic effects in chemistry: more common than you thought. , 2012, Annual review of physical chemistry.

[26]  小林 修,et al.  Lanthanides : chemistry and use in organic synthesis , 1999 .

[27]  Ian Kirker,et al.  Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th-Cm; Cp = η(5)-C5H5). , 2011, Dalton transactions.

[28]  Evert Jan Baerends,et al.  A perturbation theory approach to relativistic calculations , 1978 .

[29]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[30]  Thomas R. Cundari,et al.  Effective core potential methods for the lanthanides , 1993 .

[31]  Colin Eaborn,et al.  Comprehensive Coordination Chemistry , 1988 .

[32]  Jan M.L. Martin,et al.  Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe , 2001 .

[33]  Georg Kresse,et al.  The multiferroic phase of DyFeO3: an ab initio study , 2009, 0912.3345.

[34]  Clifford E. Myers A CASE FOR COVALENT BONDING IN LANTHANIDE TRIHALIDES , 1975 .

[35]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[36]  K. Hilpert,et al.  High temperature chemistry in metal halide lamps , 1997 .

[37]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Lanthanides. , 2009, Journal of chemical theory and computation.

[38]  Hirotoshi Mori,et al.  Revised model core potentials for third-row transition–metal atoms from Lu to Hg , 2008 .

[39]  Thomas R. Cundari,et al.  Effective core potential studies of lanthanide complexes , 1995 .

[40]  Michael Dolg,et al.  Performance of relativistic density functional and ab initio pseudopotential approaches for systems with high‐spin multiplicities: Gadolinium diatomics GdX (X=H, N, O, F, P, S, Cl, Gd) , 2000 .

[41]  S. Wang,et al.  Density functional calculations of lanthanide oxides , 1995 .

[42]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[43]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[44]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[45]  Georg Kresse,et al.  The multiferroic phase of DyFeO 3 : an ab initio study , 2010 .

[46]  Pekka Pyykkö,et al.  Calculated lanthanide contractions for molecular trihalides and fully hydrated ions: The contributions from relativity and 4f-shell hybridization , 2006 .

[47]  Luis Seijo,et al.  The ab initio model potential method: Lanthanide and actinide elements , 2001 .

[48]  S.J.A. Van Gisbergen,et al.  2.56 – ADF , 2003 .

[49]  Vincenzo Barone,et al.  Structures and properties of lanthanide and actinide complexes by a new density functional approach: Lanthanum, gadolinium, lutetium, and thorium halides as case studies , 2000 .

[50]  R. Anwander Principles in Organolanthanide Chemistry , 1999 .

[51]  Björn O. Roos,et al.  Electronic structure and chemical bonding in W-2 molecule , 2010 .

[52]  Clifford E. Myers,et al.  Thermodynamic properties of lanthanide trihalide molecules , 1977 .

[53]  Howard Kimmel,et al.  The Vibrational Spectra of Some Monosubstituted Phenyl Derivatives of Group VI a Elements , 1977 .

[54]  Ping Yang,et al.  Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory. , 2009, Journal of the American Chemical Society.

[55]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[56]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[57]  J. S. Schweitzer,et al.  Evaluation of cerium doped lutetium oxyorthosilicate (LSO) scintillation crystals for PET , 1992 .

[58]  Yaoming Xie,et al.  Binuclear manganese and rhenium carbonyls M2(CO)n (n = 10, 9, 8, 7): comparison of first row and third row transition metal carbonyl structures. , 2008, Dalton transactions.

[59]  Osamu Matsuoka,et al.  All-electron Dirac-Fock-Roothaan calculations on the electronic structure of the GdF molecule , 1997 .

[60]  Richard L. Martin,et al.  Covalency in f-element complexes , 2013 .

[61]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[62]  Nikolas Kaltsoyannis,et al.  Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. , 2013, Inorganic chemistry.

[63]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[64]  Magdolna Hargittai,et al.  Prediction of the Molecular Shape of Lanthanide Trihalides , 1995 .

[65]  Attila Kovács,et al.  Structure and Vibrations of Lanthanide Trihalides. An Assessment of Experimental and Theoretical Data. , 2004 .

[66]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[67]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[68]  Michael Dolg,et al.  Quasirelativistic f-in-core pseudopotentials and core-polarization potentials for trivalent actinides and lanthanides: molecular test for trifluorides , 2010 .

[69]  Wei Xu,et al.  On structure and bonding of lanthanoid trifluorides LnF3 (Ln = La to Lu). , 2013, Physical chemistry chemical physics : PCCP.

[70]  Gregor E. Morfill,et al.  Effect of polarization force on the propagation of dust acoustic solitary waves , 2010 .

[71]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[72]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[73]  Michael Dolg,et al.  Relativistic pseudopotentials: their development and scope of applications. , 2012, Chemical reviews.

[74]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the rare earth elements , 1989 .

[75]  Carlo Adamo,et al.  A Theoretical Study of Bonding in Lanthanide Trihalides by Density Functional Methods , 1998 .

[76]  Michael Dolg,et al.  Quasirelativistic energy-consistent 4f-in-core pseudopotentials for tetravalent lanthanide elements , 2009 .

[77]  Pekka Pyykkö,et al.  Relativity and the periodic system of elements , 1979 .

[78]  Michael Dolg,et al.  Segmented Contracted Douglas-Kroll-Hess Adapted Basis Sets for Lanthanides. , 2011, Journal of chemical theory and computation.

[79]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[80]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .