SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES?

A simple six-parameter ?CDM model provides a successful fit to WMAP data. This holds both when the WMAP data are analyzed alone or in combination with other cosmological data. Even so, it is appropriate to examine the data carefully to search for hints of deviations from the now standard model of cosmology, which includes inflation, dark energy, dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to extensive and varied analyses. While there is widespread agreement as to the overall success of the six-parameter ?CDM model, various anomalies have been reported relative to that model. In this paper we examine potential anomalies and present analyses and assessments of their significance. In most cases we find that claimed anomalies depend on posterior selection of some aspect or subset of the data. Compared with sky simulations based on the best-fit model, one can select for low probability features of the WMAP data. Low probability features are expected, but it is not usually straightforward to determine whether any particular low probability feature is the result of the a posteriori selection or non-standard cosmology. Hypothesis testing could, of course, always reveal an alternative model that is statistically favored, but there is currently no model that is more compelling. We find that two cold spots in the map are statistically consistent with random cosmic microwave background (CMB) fluctuations. We also find that the amplitude of the quadrupole is well within the expected 95% confidence range and therefore is not anomalously low. We find no significant anomaly with a lack of large angular scale CMB power for the best-fit ?CDM model. We examine in detail the properties of the power spectrum data with respect to the ?CDM model and find no significant anomalies. The quadrupole and octupole components of the CMB sky are remarkably aligned, but we find that this is not due to any single map feature; it results from the statistical combination of the full-sky anisotropy fluctuations. It may be due, in part, to chance alignments between the primary and secondary anisotropy, but this only shifts the coincidence from within the last scattering surface to between it and the local matter density distribution. While this alignment appears to be remarkable, there was no model that predicted it, nor has there been a model that provides a compelling retrodiction. We examine claims of a hemispherical or dipole power asymmetry across the sky and find that the evidence for these claims is not statistically significant. We confirm the claim of a strong quadrupolar power asymmetry effect, but there is considerable evidence that the effect is not cosmological. The likely explanation is an insufficient handling of beam asymmetries. We conclude that there is no compelling evidence for deviations from the ?CDM model, which is generally an acceptable statistical fit to WMAP and other cosmological data.

[1]  M. Neyrinck,et al.  Galaxy Counts on the CMB Cold Spot , 2009, 0911.2223.

[2]  D. Huterer,et al.  No large-angle correlations on the non-Galactic microwave sky , 2008, 0808.3767.

[3]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[4]  P. Naselsky,et al.  LACK OF ANGULAR CORRELATION AND ODD-PARITY PREFERENCE IN COSMIC MICROWAVE BACKGROUND DATA , 2010, 1011.0377.

[5]  T. Jarrett Large Scale Structure in the Local Universe — The 2MASS Galaxy Catalog , 2004, Publications of the Astronomical Society of Australia.

[6]  L. Cayón,et al.  The Non-Gaussian Cold Spot in the 3 Year Wilkinson Microwave Anisotropy Probe Data , 2006, astro-ph/0603859.

[7]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization , 2003, astro-ph/0302224.

[8]  S. Carroll,et al.  A hemispherical power asymmetry from inflation , 2008, 0806.0377.

[9]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[10]  Jean-Luc Starck,et al.  Light on dark matter with weak gravitational lensing , 2009, IEEE Signal Processing Magazine.

[11]  K. Land,et al.  Cubic anomalies in the Wilkinson Microwave Anisotropy Probe , 2005 .

[12]  M. Kamionkowski,et al.  Cosmic Microwave Background Statistics for a Direction-Dependent Primordial Power Spectrum , 2007, 0709.1144.

[13]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[14]  Is the low-l microwave background cosmic? , 2004, Physical review letters.

[15]  P. Vielva,et al.  Detection of non-Gaussianity in the WMAP 1-year data using spherical wavelets , 2003 .

[16]  A. Lewis,et al.  Estimators for CMB statistical anisotropy , 2009, 0908.0963.

[17]  M. Hobson,et al.  A Cosmic Microwave Background Feature Consistent with a Cosmic Texture , 2007, Science.

[18]  H. Peiris,et al.  Avoiding bias in reconstructing the largest observable scales from partial-sky data , 2011, 1107.5466.

[19]  O. Verkhodanov Searching for non-Gaussianity in observational cosmic microwave background data , 2012 .

[20]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[21]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[22]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[23]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[24]  R. B. Barreiro,et al.  A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data , 2007, 0706.4289.

[25]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[26]  K. Gorski,et al.  Three-Point Correlations in the COBE DMR 2 Year Anisotropy Maps , 1995, astro-ph/9503033.

[27]  Kendrick M. Smith,et al.  No evidence for the cold spot in the NVSS radio survey , 2008, 0805.2751.

[28]  I. K. Wehus,et al.  THE EFFECT OF ASYMMETRIC BEAMS IN THE WILKINSON MICROWAVE ANISOTROPY PROBE EXPERIMENT , 2009, 0904.3998.

[29]  H. Eriksen,et al.  BAYESIAN ANALYSIS OF SPARSE ANISOTROPIC UNIVERSE MODELS AND APPLICATION TO THE FIVE-YEAR WMAP DATA , 2008, 0807.2242.

[30]  J. Fadili,et al.  FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making , 2008, 0804.4068.

[31]  N. Mandolesi,et al.  HARMONIC IN-PAINTING OF COSMIC MICROWAVE BACKGROUND SKY BY CONSTRAINED GAUSSIAN REALIZATION , 2012, 1202.0188.

[32]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES , 2010, 1001.4731.

[33]  J. Fadili,et al.  CMB data analysis and sparsity , 2008, 0804.1295.

[34]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[35]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[36]  Multipole vectors - A New representation of the CMB sky and evidence for statistical anisotropy or non-Gaussianity at 2 <= l <= 8 , 2003, astro-ph/0310511.

[37]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[38]  J. Donoghue,et al.  Nonisotropy in the CMB power spectrum in single field inflation , 2007, astro-ph/0703455.

[39]  M. Neyrinck,et al.  GALAXY COUNTS ON THE COSMIC MICROWAVE BACKGROUND COLD SPOT , 2010 .

[40]  M. Strauss,et al.  Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources , 2003, astro-ph/0308260.

[41]  L. Cayón Variograms of the cosmic microwave background temperature fluctuations: confirmation of deviations from statistical isotropy , 2010, 1001.4680.

[42]  Adam Amara,et al.  iCosmo: an interactive cosmology package , 2008, 0810.1285.

[43]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[44]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[45]  Uncorrelated universe: Statistical anisotropy and the vanishing angular correlation function in WMAP years 1 3 , 2006, astro-ph/0605135.

[46]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[47]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[48]  Changbom Park,et al.  Cleaned 3 Year Wilkinson Microwave Anistropy Probe Cosmic Microwave Background Map: Magnitude of the Quadrupole and Alignment of Large-Scale Modes , 2007 .

[49]  A. Banday,et al.  The hot and cold spots in five–year WMAP data , 2009, 0903.4446.

[50]  C. Genovese,et al.  Examining the Effect of the Map-making Algorithm on Observed Power Asymmetry in WMAP Data , 2005, astro-ph/0510406.

[51]  J. Peacock,et al.  An estimate of the local ISW signal, and its impact on CMB anomalies , 2009, 0909.2495.

[52]  M. Halpern,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission , 2008 .

[53]  F. Hansen,et al.  Asymmetries in the Local Curvature of the Wilkinson Microwave Anisotropy Probe Data , 2004 .

[54]  C. Hirata Constraints on cosmic hemispherical power anomalies from quasars , 2009, 0907.0703.

[55]  G. Efstathiou,et al.  Large-angle correlations in the cosmic microwave background , 2009, 0911.5399.

[56]  Y Wiaux,et al.  Global universe anisotropy probed by the alignment of structures in the cosmic microwave background. , 2006, Physical review letters.

[57]  M. Kunz,et al.  Cosmic microwave anisotropies from BPS semilocal strings , 2007, 0711.1842.

[58]  P. Lilje,et al.  Asymmetries in the Cosmic Microwave Background Anisotropy Field , 2004 .

[59]  H. K. Eriksen,et al.  Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton , 2004 .

[60]  Imprints of a Primordial Preferred Direction on the Microwave Background , 2007 .

[61]  P. Vielva,et al.  The Non-Gaussian Cold Spot in the 3 Year Wilkinson Microwave Anisotropy Probe Data , 2007 .

[62]  R. Leonardi,et al.  On the cosmic microwave background large-scale angular correlations , 2006 .

[63]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits , 2006, astro-ph/0603452.

[64]  P. Vielva,et al.  A comprehensive overview of the Cold Spot , 2010, 1008.3051.

[65]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP *) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2011 .

[66]  Harmonic inpainting of the cosmic microwave background sky: Formulation and error estimate , 2008, 0804.0527.

[67]  R. B. Barreiro,et al.  A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data , 2008 .

[68]  D. Huterer,et al.  Disks in the sky: A reassessment of the WMAP “cold spot” , 2009, 0908.3988.

[69]  E. L. Wright,et al.  Preliminary separation of galactic and cosmic microwave emission for the COBE Differential Microwave Radiometer , 1992 .

[70]  P. Lilje,et al.  INCREASING EVIDENCE FOR HEMISPHERICAL POWER ASYMMETRY IN THE FIVE-YEAR WMAP DATA , 2009, 0903.1229.

[71]  Christoph Räth,et al.  A scaling index analysis of the Wilkinson Microwave Anisotropy Probe three-year data: signatures of non-Gaussianities and asymmetries in the cosmic microwave background , 2007 .

[72]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[73]  Max Tegmark,et al.  High resolution foreground cleaned CMB map from WMAP , 2003, astro-ph/0302496.

[74]  K. Land,et al.  Is the universe odd , 2005, astro-ph/0507289.

[75]  M. Hobson,et al.  The CMB cold spot: texture, cluster or void? , 2008, 0804.2904.

[76]  D. Huterer,et al.  Large-Angle Anomalies in the CMB , 2010, 1004.5602.

[77]  P. Lilje,et al.  POWER ASYMMETRY IN COSMIC MICROWAVE BACKGROUND FLUCTUATIONS FROM FULL SKY TO SUB-DEGREE SCALES: IS THE UNIVERSE ISOTROPIC? , 2008, 0812.3795.

[78]  On the large-angle anomalies of the microwave sky , 2005, astro-ph/0508047.

[79]  H. Peiris,et al.  Testable polarization predictions for models of CMB isotropy anomalies , 2007, 0711.2321.

[80]  Jean-Luc Starck,et al.  Morphological Component Analysis and Inpainting on the Sphere: Application in Physics and Astrophysics , 2007 .

[81]  M. Cruz,et al.  The non‐Gaussian cold spot in Wilkinson Microwave Anisotropy Probe: significance, morphology and foreground contribution , 2006, astro-ph/0601427.

[82]  M. Halpern,et al.  THEMICROWAVE ANISOTROPY PROBE (MAP )1 MISSION , 2003 .

[83]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[84]  Nicolaas E. Groeneboom,et al.  BAYESIAN ANALYSIS OF AN ANISOTROPIC UNIVERSE MODEL: SYSTEMATICS AND POLARIZATION , 2009, 0911.0150.

[85]  Broken Isotropy from a Linear Modulation of the Primordial Perturbations , 2006, astro-ph/0607423.

[86]  Oliver Zahn,et al.  Detection of gravitational lensing in the cosmic microwave background , 2007, 0705.3980.

[87]  K. Land,et al.  Examination of evidence for a preferred axis in the cosmic radiation anisotropy. , 2005, Physical review letters.

[88]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[89]  The Axis of Evil revisited , 2006, astro-ph/0611518.

[90]  D. Huterer,et al.  Spontaneous isotropy breaking: a mechanism for cmb multipole alignments , 2005, astro-ph/0509301.

[91]  Benjamin D. Wandelt,et al.  Global, Exact Cosmic Microwave Background Data Analysis Using Gibbs Sampling , 2004 .

[92]  J. Silk,et al.  On the Magnitude of Dark Energy Voids and Overdensities , 2007, 0709.2227.

[93]  Low‐order multipole maps of cosmic microwave background anisotropy derived from WMAP , 2004, astro-ph/0405007.

[94]  M. Halpern,et al.  Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis , 2006 .

[95]  Amir Hajian,et al.  Measuring Statistical isotropy of the CMB anisotropy , 2003 .

[96]  T. Louis,et al.  Filling in CMB map missing data using constrained Gaussian realizations , 2011, 1109.0286.

[97]  Shea Brown,et al.  Extragalactic Radio Sources and the WMAP Cold Spot , 2007, 0704.0908.

[98]  Departure from Gaussianity of the Cosmic Microwave Background Temperature Anisotropies in the Three-Year WMAP Data , 2006, astro-ph/0603662.

[99]  C. Wetterich,et al.  Too few spots in the cosmic microwave background , 2009, 0905.3324.

[100]  P. Naselsky,et al.  Anomalous parity asymmetry of WMAP 7-year power spectrum data at low multipoles: Is it cosmological or systematics? , 2010, 1002.0148.

[101]  P. Lilje,et al.  Hemispherical Power Asymmetry in the Third-Year Wilkinson Microwave Anisotropy Probe Sky Maps , 2007, astro-ph/0701089.

[102]  C. Dickinson,et al.  Towards a free–free template for CMB foregrounds , 2003, astro-ph/0302024.

[103]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Error Limits , 2003, astro-ph/0302222.

[104]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[105]  Cmb multipole measurements in the presence of foregrounds , 2006, astro-ph/0603369.

[106]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[107]  P. Vielva,et al.  Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets , 2004 .

[108]  J. Aumont,et al.  The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths , 2012, 1207.3675.

[109]  A. Lasenby,et al.  Bianchi VIIh models and the cold spot texture , 2007, 0712.1789.

[110]  E. Kovetz,et al.  Parity in the CMB: Space Oddity , 2011, 1108.1702.

[111]  M. Kamionkowski,et al.  A Scale-Dependent Power Asymmetry from Isocurvature Perturbations , 2009, 0907.0705.

[112]  C. B. Netterfield,et al.  Planck early results. XX. New light on anomalous microwave emission from spinning dust grains , 2011, 1101.2031.

[113]  P. Naselsky,et al.  ANOMALOUS PARITY ASYMMETRY OF THE WILKINSON MICROWAVE ANISOTROPY PROBE POWER SPECTRUM DATA AT LOW MULTIPOLES , 2010, 1001.4613.

[114]  A meandering inflaton , 2009, 0910.0849.

[115]  Pia Mukherjee,et al.  Wavelets and Wilkinson Microwave Anisotropy Probe Non-Gaussianity , 2004, astro-ph/0402602.