An interior‐point algorithm for elastoplasticity

The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Etienne Loute,et al.  Solving limit analysis problems: an interior‐point method , 2005 .

[2]  Panos M. Pardalos,et al.  Second-order cone programming approaches to static shakedown analysis in steel plasticity , 2005, Optim. Methods Softw..

[3]  M. H. Wright The interior-point revolution in optimization: History, recent developments, and lasting consequences , 2004 .

[4]  G. Ventura,et al.  Numerical analysis of Augmented Lagrangian algorithms in complementary elastoplasticity , 2004 .

[5]  L. Wang,et al.  Formulation of the return mapping algorithm for elastoplastic soil models , 2004 .

[6]  Miguel Cervera,et al.  Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity , 2004 .

[7]  M. Gilbert,et al.  Layout optimization of large‐scale pin‐jointed frames , 2003 .

[8]  Pascal Francescato,et al.  Interior point optimization and limit analysis: an application , 2003 .

[9]  S. Krenk,et al.  Implicit integration of plasticity models for granular materials , 2003 .

[10]  Mohammed Hjiaj,et al.  A complete stress update algorithm for the non-associated Drucker–Prager model including treatment of the apex , 2003 .

[11]  Ronaldo I. Borja,et al.  On the numerical integration of three-invariant elastoplastic constitutive models , 2003 .

[12]  F. Tin-Loi,et al.  An iterative complementarity approach for elastoplastic analysis involving frictional contact , 2003 .

[13]  Kristian Krabbenhoft,et al.  A general non‐linear optimization algorithm for lower bound limit analysis , 2003 .

[14]  Peter Frederic Thomson,et al.  Quadratic programming method in numerical simulation of metal forming process , 2002 .

[15]  Kristian Krabbenhoft,et al.  Lower bound limit analysis of slabs with nonlinear yield criteria , 2002 .

[16]  K. M. Liew,et al.  Elasto‐plasticity revisited: numerical analysis via reproducing kernel particle method and parametric quadratic programming , 2002 .

[17]  Scott W. Sloan,et al.  Lower bound limit analysis using non‐linear programming , 2002 .

[18]  Scott W. Sloan,et al.  An Automatic Newton–Raphson Scheme , 2002 .

[19]  Kristian Krabbenhoft,et al.  Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming , 2002 .

[20]  Ray Kai Leung Su,et al.  Parametric quadratic programming method for elastic contact fracture analysis , 2002 .

[21]  Jose Luis Silveira,et al.  An algorithm for shakedown analysis with nonlinear yield functions , 2002 .

[22]  G. Xiaoming,et al.  On the mathematical modeling for elastoplastic contact problem and its solution by quadratic programming , 2001 .

[23]  Antonio Huerta,et al.  Consistent tangent matrices for substepping schemes , 2001 .

[24]  Majid T. Manzari,et al.  On integration of a cyclic soil plasticity model , 2001 .

[25]  Raúl A. Feijóo,et al.  An adaptive approach to limit analysis , 2001 .

[26]  Robert L. Taylor,et al.  Finite element implementation of non-linear elastoplastic constitutive laws using local and global explicit algorithms with automatic error control† , 2001 .

[27]  S. Sloan,et al.  Refined explicit integration of elastoplastic models with automatic error control , 2001 .

[28]  Scott W. Sloan,et al.  Upper bound limit analysis using linear finite elements and non‐linear programming , 2001 .

[29]  Jean B. Lasserre,et al.  Why the logarithmic barrier function in convex and linear programming? , 2000, Oper. Res. Lett..

[30]  Agustí Pérez Foguet,et al.  Key Issues in Computational Geomechanics , 2000 .

[31]  Scott W. Sloan,et al.  Aspects of finite element implementation of critical state models , 2000 .

[32]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[33]  Knud D. Andersen,et al.  Computation of collapse states with von Mises type yield condition , 1998 .

[34]  G. Alfano,et al.  A displacement-like finite element model for J2 elastoplasticity: Variational formulation and finite-step solution , 1998 .

[35]  Nestor Zouain,et al.  An approach to limit analysis with cone-shaped yield surfaces , 1997 .

[36]  Guy T. Houlsby,et al.  Application of thermomechanical principles to the modelling of geotechnical materials , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  P. Lourenço,et al.  Multisurface Interface Model for Analysis of Masonry Structures , 1997 .

[38]  Boris Jeremić,et al.  Implicit integrations in elastoplastic geotechnics , 1997 .

[39]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[40]  Scott W. Sloan,et al.  AN AUTOMATIC LOAD STEPPING ALGORITHM WITH ERROR CONTROL , 1996 .

[41]  P. H. Feenstra,et al.  A composite plasticity model for concrete , 1996 .

[42]  S. Sloan,et al.  Upper bound limit analysis using discontinuous velocity fields , 1995 .

[43]  Knud D. Andersen,et al.  Limit Analysis with the Dual Affine Scaling Algorithm , 1995 .

[44]  S. Sloan,et al.  A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion , 1995 .

[45]  J. C. Simo,et al.  A modified cap model: Closest point solution algorithms , 1993 .

[46]  Scott W. Sloan,et al.  INTEGRATION OF TRESCA AND MOHR-COULOMB CONSTITUTIVE RELATIONS IN PLANE STRAIN ELASTOPLASTICITY , 1992 .

[47]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, Part II: implicit integration of constitutive equation based a nonlinear elastic stress predictor , 1991 .

[48]  Irvin Lustig,et al.  Feasibility issues in a primal-dual interior-point method for linear programming , 1990, Math. Program..

[49]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, part I: implicit integration of elastoplastic constitutive relations , 1990 .

[50]  Robert L. Taylor,et al.  Complementary mixed finite element formulations for elastoplasticity , 1989 .

[51]  Scott W. Sloan,et al.  Upper bound limit analysis using finite elements and linear programming , 1989 .

[52]  R. Fletcher Practical Methods of Optimization , 1988 .

[53]  Scott W. Sloan,et al.  Substepping schemes for the numerical integration of elastoplastic stress–strain relations , 1987 .

[54]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[55]  E. P. Popov,et al.  Accuracy and stability of integration algorithms for elastoplastic constitutive relations , 1985 .

[56]  Luis Resende,et al.  Formulation of Drucker‐Prager Cap Model , 1985 .

[57]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[58]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[59]  J. Pastor,et al.  Finite element method and limit analysis theory for soil mechanics problems , 1980 .

[60]  George Y. Baladi,et al.  Generalized Cap Model for Geological Materials , 1976 .

[61]  Giulio Maier,et al.  Incremental elastoplastic analysis and quadratic optimization , 1970 .

[62]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[63]  Giulio Maier,et al.  Quadratic programming and theory of elastic-perfectly plastic structures , 1968 .

[64]  G. Maier A quadratic programming approach for certain classes of non linear structural problems , 1968 .

[65]  R. Borst,et al.  2 Computational Strategies for Standard Soil Plasticity Models , 2001 .

[66]  Davide Bigoni,et al.  Bifurcation and Instability of Non-Associative Elastoplastic Solids , 2000 .

[67]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[68]  Andrew Abbo,et al.  Finite element algorithms for elastoplasticy and consolidation , 1997 .

[69]  Alfredo Edmundo Huespe,et al.  A nonlinear optimization procedure for limit analysis , 1996 .

[70]  José Herskovits,et al.  An iterative algorithm for limit analysis with nonlinear yield functions , 1993 .

[71]  S. Sture,et al.  Analysis and calibration of a three-invariant plasticity model for granular materials , 1989 .

[72]  Scott W. Sloan,et al.  Lower bound limit analysis using finite elements and linear programming , 1988 .

[73]  P. Perzyna Thermodynamic Theory of Viscoplasticity , 1971 .

[74]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .