Deneb: An open-source high-performance multi-physical flow solver based on high-order DRM-DG method

[1]  Chongam Kim,et al.  Shock-capturing model using PID controller for high-order discontinuous Galerkin method , 2023, AIAA SCITECH 2023 Forum.

[2]  Chongam Kim,et al.  ANN-based Air Property Models up to 25,000 K for Hypersonic Equilibrium Flow Simulations , 2022, AIAA AVIATION 2022 Forum.

[3]  N. Nguyen,et al.  Exasim: Generating Discontinuous Galerkin Codes for Numerical Solutions of Partial Differential Equations on Graphics Processors , 2022, SoftwareX.

[4]  Elia Merzari,et al.  NekRS, a GPU-Accelerated Spectral Element Navier-Stokes Solver , 2021, Parallel Comput..

[5]  Chongam Kim,et al.  High-performance Discontinuous Galerkin Flow Solver using Direct Reconstruction Method , 2021, AIAA AVIATION 2021 FORUM.

[6]  Z.J. Wang,et al.  Implicit large Eddy simulation of the NASA CRM high-lift configuration near stall , 2021 .

[7]  Chongam Kim,et al.  Architecture-based and target-oriented algorithm optimization of high-order methods via complete-search tensor contraction , 2021, Comput. Phys. Commun..

[8]  Chongam Kim,et al.  Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes III. Code optimization via tensor contraction , 2021 .

[9]  Gregor Gassner,et al.  FLEXI: A high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws , 2019, Comput. Math. Appl..

[10]  TILDA: Towards Industrial LES/DNS in Aeronautics , 2021, Notes on Numerical Fluid Mechanics and Multidisciplinary Design.

[11]  Chongam Kim,et al.  Correction: ACTFlow: A Target-Oriented Finite Volume Solver for All-Speed Compressible Turbulent Flow Simulations , 2020, AIAA Scitech 2021 Forum.

[12]  A. Christophe,et al.  Implicit hybridized discontinuous Galerkin methods for compressible magnetohydrodynamics , 2020, J. Comput. Phys. X.

[13]  Chongam Kim,et al.  Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes II. Surface integration , 2019, J. Comput. Phys..

[14]  Robert Michael Kirby,et al.  Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods , 2019, Comput. Phys. Commun..

[15]  Robert Michael Kirby,et al.  Interpolation Error Bounds for Curvilinear Finite Elements and Their Implications on Adaptive Mesh Refinement , 2018, J. Sci. Comput..

[16]  Jay Sitaraman,et al.  Wind farm simulations using an overset hp-adaptive approach with blade-resolved turbine models , 2017, Int. J. High Perform. Comput. Appl..

[17]  Chongam Kim,et al.  Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes I. Volume integration , 2019, J. Comput. Phys..

[18]  Chongam Kim,et al.  High-order multi-dimensional limiting strategy with subcell resolution I. Two-dimensional mixed meshes , 2018, J. Comput. Phys..

[19]  Gregor Gassner,et al.  Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations , 2017, J. Comput. Phys..

[20]  Paolo Bientinesi,et al.  Design of a High-Performance GEMM-like Tensor–Tensor Multiplication , 2016, ACM Trans. Math. Softw..

[21]  Chongam Kim,et al.  Higher-order multi-dimensional limiting process for DG and FR/CPR methods on tetrahedral meshes , 2017 .

[22]  Xevi Roca,et al.  Implicit large-eddy simulation of compressible flows using the Interior Embedded Discontinuous Galerkin method , 2016, ArXiv.

[23]  Chongam Kim,et al.  Hierarchical multi-dimensional limiting strategy for correction procedure via reconstruction , 2016, J. Comput. Phys..

[24]  Alessandro Colombo,et al.  Linearly implicit Rosenbrock-type Runge–Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows , 2015 .

[25]  Robert Michael Kirby,et al.  Nektar++: An open-source spectral/hp element framework , 2015, Comput. Phys. Commun..

[26]  Koen Hillewaert,et al.  IDIHOM: Industrialization of high-order methods - a top-down approach : results of a collaborative research project funded by the European Union, 2010 - 2014 , 2015 .

[27]  H. T. Huynh,et al.  High-Order Methods for Computational Fluid Dynamics: A Brief Review of Compact Differential Formulations on Unstructured Grids , 2014 .

[28]  Chongam Kim,et al.  Higher-order multi-dimensional limiting strategy for discontinuous Galerkin methods in compressible inviscid and viscous flows , 2014 .

[29]  Freddie D. Witherden,et al.  PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach , 2013, Comput. Phys. Commun..

[30]  Germain Rousseaux,et al.  Forty years of Galilean Electromagnetism (1973–2013) , 2013 .

[31]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[32]  Sergey Yakovlev,et al.  Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2013, J. Comput. Sci..

[33]  Lorenzo Botti,et al.  Influence of Reference-to-Physical Frame Mappings on Approximation Properties of Discontinuous Piecewise Polynomial Spaces , 2012, J. Sci. Comput..

[34]  Antony Jameson,et al.  On the Non-linear Stability of Flux Reconstruction Schemes , 2012, J. Sci. Comput..

[35]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[36]  R. Tognaccini,et al.  RANS analysis of the low-Reynolds number flow around the SD7003 airfoil , 2011 .

[37]  Per-Olof Persson,et al.  Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method , 2011 .

[38]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[39]  Marshall C. Galbraith,et al.  Implicit Large Eddy Simulation of Low-Reynolds-Number Transitional Flow Past the SD7003 Airfoil , 2010 .

[40]  Norbert Kroll,et al.  ADIGMA: A European Project on the Development of Adaptive Higher Order Variational Methods for Aerospace Applications , 2010 .

[41]  Sangho Kim,et al.  Asymmetric Vortices around a Body at High Angle of Attack Supersonic Flow , 2009 .

[42]  Zhiliang Xu,et al.  Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..

[43]  Claus-Dieter Munz,et al.  Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..

[44]  H. T. Huynh,et al.  A Reconstruction Approach to High -Order Schemes Including Discontinuous Galerkin for Diffusion , 2009 .

[45]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[46]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[47]  Kazem Hejranfar,et al.  Dual-code solution procedure for efficient computing equilibrium hypersonic axisymmetric laminar flows , 2008 .

[48]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[49]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[50]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[51]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[52]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[53]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[54]  Se-Myong Chang,et al.  On the shock–vortex interaction in Schardin's problem , 2000 .

[55]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[56]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[57]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[58]  D. Gaitonde,et al.  The performance of flux-split algorithms in high-speed viscous flows , 1992 .

[59]  D. Degani,et al.  Effect of geometrical disturbance on vortex asymmetry , 1991 .

[60]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[61]  Ramadas K. Prabhu,et al.  A Navier-Stokes solver for high speed equilibrium flows and application to blunt bodies , 1989 .

[62]  J. R. Moselle,et al.  Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow , 1991 .

[63]  P. Lamont,et al.  The complex asymmetric flow over a 3.5D ogive nose and cylindrical afterbody at high angles of attack , 1982 .

[64]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[65]  T. Mouschovias,et al.  Magnetic braking of an aligned rotator during star formation: An exact, time-dependent solution , 1980 .

[66]  H. Schardin,et al.  High Frequency Cinematography in the Shock Tube , 1957 .