Sustainability-inspired cell design for a fully recyclable sodium ion battery

[1]  A Better Battery , 2021, Electric and Hybrid Vehicle Technology International.

[2]  R. Cabeza,et al.  Present and Future , 2008 .

[3]  Yang Shi,et al.  Resolving the Compositional and Structural Defects of Degraded LiNixCoyMnzO2 Particles to Directly Regenerate High-Performance Lithium-Ion Battery Cathodes , 2018, ACS Energy Letters.

[4]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[5]  Yang Shi,et al.  Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles , 2018 .

[6]  Timothy G. Townsend,et al.  A review on the growing concern and potential management strategies of waste lithium-ion batteries , 2018 .

[7]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[8]  Dawei Song,et al.  Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries , 2017 .

[9]  Changsong Dai,et al.  Purification and Characterization of Reclaimed Electrolytes from Spent Lithium-Ion Batteries , 2017 .

[10]  Barack Obama,et al.  The irreversible momentum of clean energy , 2017, Science.

[11]  David H. StJohn,et al.  The Light Metals , 2017 .

[12]  Min Ling,et al.  All-climate sodium ion batteries based on the NASICON electrode materials , 2016 .

[13]  A. Mukherjee,et al.  Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites , 2016 .

[14]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[15]  Bo Wang,et al.  Li3V2(PO4)3 as a cathode additive for the over-discharge protection of lithium ion batteries , 2016 .

[16]  Eric C Evarts Lithium batteries: To the limits of lithium , 2015, Nature.

[17]  Erica Gies,et al.  Recycling: Lazarus batteries , 2015, Nature.

[18]  Changsong Dai,et al.  Supercritical CO2 extraction of organic carbonate-based electrolytes of lithium-ion batteries , 2014 .

[19]  Diran Apelian,et al.  A closed loop process for recycling spent lithium ion batteries , 2014 .

[20]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[21]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[22]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[23]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[24]  B. Friedrich,et al.  Development of a recycling process for Li-ion batteries , 2012 .

[25]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[26]  Keqiang Qiu,et al.  Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. , 2011, Journal of hazardous materials.

[27]  H. Thomas,et al.  A review of processes and technologies for the recycling of lithium-ion secondary batteries , 2008 .

[28]  R. R. Moskalyk,et al.  Processing of vanadium: a review , 2003 .

[29]  X. Ren,et al.  Biodegradable plastics: a solution or a challenge? , 2003 .

[30]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[31]  Nadine Dueso Volatile Organic Compounds Treatment Techniques , 1994 .

[32]  R. C. Macridis A review , 1963 .