A review on directional information in neural signals for brain-machine interfaces

[1]  C. Mehring,et al.  Differential Representation of Arm Movement Direction in Relation to Cortical Anatomy and Function , 2008 .

[2]  Jose L. Contreras-Vidal,et al.  Decoding hand and cursor kinematics from magnetoencephalographic signals during tool use , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  Paul Ferrari,et al.  Self-paced movements induce high-frequency gamma oscillations in primary motor cortex , 2008, NeuroImage.

[4]  Andrew S. Whitford,et al.  Cortical control of a prosthetic arm for self-feeding , 2008, Nature.

[5]  Wei Wu,et al.  Real-Time Decoding of Nonstationary Neural Activity in Motor Cortex , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[6]  Andreas Schulze-Bonhage,et al.  Movement related activity in the high gamma range of the human EEG , 2008, NeuroImage.

[7]  Robert T. Knight,et al.  Five-dimensional neuroimaging: Localization of the time–frequency dynamics of cortical activity , 2008, NeuroImage.

[8]  Dean J Krusienski,et al.  Emulation of computer mouse control with a noninvasive brain–computer interface , 2008, Journal of neural engineering.

[9]  J. Wolpaw,et al.  Towards an independent brain–computer interface using steady state visual evoked potentials , 2008, Clinical Neurophysiology.

[10]  C. Braun,et al.  Hand Movement Direction Decoded from MEG and EEG , 2008, The Journal of Neuroscience.

[11]  Andreas Schulze-Bonhage,et al.  Prediction of arm movement trajectories from ECoG-recordings in humans , 2008, Journal of Neuroscience Methods.

[12]  Touradj Ebrahimi,et al.  An efficient P300-based brain–computer interface for disabled subjects , 2008, Journal of Neuroscience Methods.

[13]  H. Poizner,et al.  Predicting Reaching Targets from Human EEG , 2008, IEEE Signal Processing Magazine.

[14]  J. Cacioppo,et al.  Handbook Of Psychophysiology , 2019 .

[15]  J. Blumberg,et al.  Adaptive Classification for Brain Computer Interfaces , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[16]  J. Wolpaw,et al.  Decoding two-dimensional movement trajectories using electrocorticographic signals in humans , 2007, Journal of neural engineering.

[17]  Rajesh P. N. Rao,et al.  Real-time functional brain mapping using electrocorticography , 2007, NeuroImage.

[18]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[19]  Eran Stark,et al.  Predicting Movement from Multiunit Activity , 2007, The Journal of Neuroscience.

[20]  A. Georgopoulos,et al.  Mapping of the preferred direction in the motor cortex , 2007, Proceedings of the National Academy of Sciences.

[21]  Dimitrios Pantazis,et al.  Coherent neural representation of hand speed in humans revealed by MEG imaging , 2007, Proceedings of the National Academy of Sciences.

[22]  Cuntai Guan,et al.  Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface , 2007, NeuroImage.

[23]  Thomas Naselaris,et al.  Large-scale organization of preferred directions in the motor cortex. II. Analysis of local distributions. , 2006, Journal of neurophysiology.

[24]  Thomas Naselaris,et al.  Large-scale organization of preferred directions in the motor cortex. I. Motor cortical hyperacuity for forward reaching. , 2006, Journal of neurophysiology.

[25]  Yuanqing Li,et al.  An Extended EM Algorithm for Joint Feature Extraction and Classification in Brain-Computer Interfaces , 2006, Neural Computation.

[26]  José del R. Millán,et al.  Very high frequency oscillations (VHFO) as a predictor of movement intentions , 2006, NeuroImage.

[27]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[28]  E. Donchin,et al.  Brain-computer interface research at the university of south Florida cognitive psychophysiology laboratory: the P300 speller , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[29]  Reinhold Scherer,et al.  A fully on-line adaptive BCI , 2006, IEEE Transactions on Biomedical Engineering.

[30]  Rajesh P. N. Rao,et al.  Towards adaptive classification for BCI , 2006, Journal of neural engineering.

[31]  Wei Wu,et al.  Bayesian Population Decoding of Motor Cortical Activity Using a Kalman Filter , 2006, Neural Computation.

[32]  Christa Neuper,et al.  Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments. , 2006, Progress in brain research.

[33]  N. Crone,et al.  High-frequency gamma oscillations and human brain mapping with electrocorticography. , 2006, Progress in brain research.

[34]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[35]  C. Mehring,et al.  Encoding of Movement Direction in Different Frequency Ranges of Motor Cortical Local Field Potentials , 2005, The Journal of Neuroscience.

[36]  A. Georgopoulos,et al.  Magnetoencephalographic signals predict movement trajectory in space , 2005, Experimental Brain Research.

[37]  Jonathan R Wolpaw,et al.  Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C. Mehring,et al.  Comparing information about arm movement direction in single channels of local and epicortical field potentials from monkey and human motor cortex , 2004, Journal of Physiology-Paris.

[39]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[40]  Soo-Young Lee,et al.  Brain–computer interface using fMRI: spatial navigation by thoughts , 2004, Neuroreport.

[41]  M. Stokes,et al.  Cognitive tasks for driving a brain-computer interfacing system: a pilot study , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[42]  E. L. Schwartz,et al.  Cat and monkey cortical columnar patterns modeled by bandpass-filtered 2D white noise , 1990, Biological Cybernetics.

[43]  H. Kornhuber,et al.  Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale , 1965, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[44]  C. Mehring,et al.  Inference of hand movements from local field potentials in monkey motor cortex , 2003, Nature Neuroscience.

[45]  David M. Santucci,et al.  Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates , 2003, PLoS biology.

[46]  A. Georgopoulos,et al.  Modular organization of directionally tuned cells in the motor cortex: Is there a short-range order? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. P. Levine,et al.  Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement , 2003, Clinical Neurophysiology.

[48]  Chih-Jen Lin,et al.  Training v-Support Vector Regression: Theory and Algorithms , 2002, Neural Computation.

[49]  Dawn M. Taylor,et al.  Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.

[50]  S. Meagher Instant neural control of a movement signal , 2002 .

[51]  Michael J. Black,et al.  Inferring Hand Motion from Multi-Cell Recordings in Motor Cortex using a Kalman Filter , 2002 .

[52]  Jerald D. Kralik,et al.  Real-time prediction of hand trajectory by ensembles of cortical neurons in primates , 2000, Nature.

[53]  G Calhoun,et al.  Brain-computer interfaces based on the steady-state visual-evoked response. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[54]  Bagrat Amirikian,et al.  Directional tuning profiles of motor cortical cells , 2000, Neuroscience Research.

[55]  J. Cacioppo,et al.  Handbook of psychophysiology (2nd ed.). , 2000 .

[56]  A B Schwartz,et al.  Motor cortical representation of speed and direction during reaching. , 1999, Journal of neurophysiology.

[57]  William D. Penny,et al.  EEG-based communication via dynamic neural network models , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[58]  H. Flor,et al.  A spelling device for the paralysed , 1999, Nature.

[59]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. , 1998, Brain : a journal of neurology.

[60]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. , 1998, Brain : a journal of neurology.

[61]  P. Kennedy,et al.  Restoration of neural output from a paralyzed patient by a direct brain connection , 1998, Neuroreport.

[62]  J. Donoghue,et al.  Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. , 1998, Journal of neurophysiology.

[63]  R. Hari,et al.  Functional Segregation of Movement-Related Rhythmic Activity in the Human Brain , 1995, NeuroImage.

[64]  R P Lesser,et al.  Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. , 1993, Electroencephalography and clinical neurophysiology.

[65]  Gert Pfurtscheller,et al.  Brain-computer interface: a new communication device for handicapped persons , 1993 .

[66]  D J McFarland,et al.  An EEG-based brain-computer interface for cursor control. , 1991, Electroencephalography and clinical neurophysiology.

[67]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[68]  B. Rockstroh,et al.  Slow potentials of the cerebral cortex and behavior. , 1990, Physiological reviews.

[69]  G. Pfurtscheller Functional Topography During Sensorimotor Activation Studied with Event‐Related Desynchronization Mapping , 1989, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[70]  B. Rockstroh Slow cortical potentials and behavior , 1989 .

[71]  E. Donchin,et al.  Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. , 1988, Electroencephalography and clinical neurophysiology.

[72]  A. P. Georgopoulos,et al.  Primate motor cortex and free arm movements to visual targets in three- dimensional space. II. Coding of the direction of movement by a neuronal population , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[74]  John F. Kalaska,et al.  Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations , 1983 .

[75]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[77]  H. Kornhuber,et al.  [CHANGES IN THE BRAIN POTENTIAL IN VOLUNTARY MOVEMENTS AND PASSIVE MOVEMENTS IN MAN: READINESS POTENTIAL AND REAFFERENT POTENTIALS]. , 1965, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.