Gas Abundance Sensor Package (GASP) is a stand-alone scientific instrument that has the capability to measure the concentration of target gases based on a non-dispersive infrared sensor system along with atmospheric reference parameters. The main objective of this work is to develop a GASP system which takes advantage of available technologies and off-the-shelf components to provide a cost-effective solution for localized sampling of gas concentrations. GASP will enable scientists to study the atmosphere and will identify the conditions of the target’s planetary local environment. Moreover, due to a recent trend of miniaturization of electronic components and thermopiles detectors, a small size and robust instrument with a reduction in power consumption is developed in this work. This allows GASP to be easily integrated into a variety of small space vehicles such as CubeSats or small satellite system, especially the Micro-Reentry Capsule (MIRCA) prototype vehicle. This prototype is one of the most advanced concepts of small satellites that has the capability to survive the rapid dive into the atmosphere of a planet. In this paper, a fully-operational instrument system will be developed and tested in the laboratory environment as well as flight preparation for a field test of the instrument suite will be described.