Characterizing hippocampal dynamics with MEG: A systematic review and evidence‐based guidelines

The hippocampus, a hub of activity for a variety of important cognitive processes, is a target of increasing interest for researchers and clinicians. Magnetoencephalography (MEG) is an attractive technique for imaging spectro‐temporal aspects of function, for example, neural oscillations and network timing, especially in shallow cortical structures. However, the decrease in MEG signal‐to‐noise ratio as a function of source depth implies that the utility of MEG for investigations of deeper brain structures, including the hippocampus, is less clear. To determine whether MEG can be used to detect and localize activity from the hippocampus, we executed a systematic review of the existing literature and found successful detection of oscillatory neural activity originating in the hippocampus with MEG. Prerequisites are the use of established experimental paradigms, adequate coregistration, forward modeling, analysis methods, optimization of signal‐to‐noise ratios, and protocol trial designs that maximize contrast for hippocampal activity while minimizing those from other brain regions. While localizing activity to specific sub‐structures within the hippocampus has not been achieved, we provide recommendations for improving the reliability of such endeavors.

[1]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[2]  Katsuya Ogata,et al.  Neuromagnetic evidence for hippocampal modulation of auditory processing , 2016, NeuroImage.

[3]  H. Duvernoy,et al.  The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI , 1997 .

[4]  Raymond J. Dolan,et al.  Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations , 2015, NeuroImage.

[5]  Margot J. Taylor,et al.  Concussion Alters the Functional Brain Processes of Visual Attention and Working Memory. , 2017, Journal of neurotrauma.

[6]  Hong-wei Dong,et al.  Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? , 2010, Neuron.

[7]  Joachim Gross,et al.  Good practice for conducting and reporting MEG research , 2013, NeuroImage.

[8]  Richard Bowtell,et al.  Combining EEG and fMRI. , 2011, Methods in molecular biology.

[9]  Marco Congedo,et al.  Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions , 2012, Journal of Cognitive Neuroscience.

[10]  Mark W. Woolrich,et al.  Inferring task-related networks using independent component analysis in magnetoencephalography , 2012, NeuroImage.

[11]  Byoung-Tak Zhang,et al.  Effective EEG Connectivity Analysis of Episodic Memory Retrieval , 2014, CogSci.

[12]  Mark W. Woolrich,et al.  Using generative models to make probabilistic statements about hippocampal engagement in MEG , 2017, NeuroImage.

[13]  Richard Coppola,et al.  Evoked amygdala responses to negative faces revealed by adaptive MEG beamformers , 2008, Brain Research.

[14]  Arnaud Delorme,et al.  Frontal midline EEG dynamics during working memory , 2005, NeuroImage.

[15]  Mark A McDaniel,et al.  Brain regions and their dynamics in prospective memory retrieval: a MEG study. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[16]  G. Fornara,et al.  A neuroanatomical account of mental time travelling in schizophrenia: A meta-analysis of functional and structural neuroimaging data , 2017, Neuroscience & Biobehavioral Reviews.

[17]  Y. Attal,et al.  Assessment of Subcortical Source Localization Using Deep Brain Activity Imaging Model with Minimum Norm Operators: A MEG Study , 2013, PloS one.

[18]  Joseph R. Madsen,et al.  Human theta oscillations exhibit task dependence during virtual maze navigation , 1999, Nature.

[19]  J. Fell,et al.  Memory formation by neuronal synchronization , 2006, Brain Research Reviews.

[20]  Katherine M. Becker,et al.  Resting-State Neurophysiological Abnormalities in Posttraumatic Stress Disorder: A Magnetoencephalography Study , 2017, Front. Hum. Neurosci..

[21]  Riitta Salmelin,et al.  Magnetoencephalography: From SQUIDs to neuroscience Neuroimage 20th Anniversary Special Edition , 2012, NeuroImage.

[22]  Rebecca L. Gómez,et al.  The extended trajectory of hippocampal development: Implications for early memory development and disorder , 2015, Developmental Cognitive Neuroscience.

[23]  Margot J. Taylor,et al.  Detection and localization of hippocampal activity using beamformers with MEG: A detailed investigation using simulations and empirical data , 2011, Human brain mapping.

[24]  Samuel J. Williamson,et al.  Magnetic Fields of the Cerebral Cortex , 1980 .

[25]  L. Colgin Rhythms of the hippocampal network , 2016, Nature Reviews Neuroscience.

[26]  Naymee Velez-Ruiz,et al.  Neuroimaging in the Evaluation of Epilepsy , 2012, Seminars in Neurology.

[27]  A. Puce,et al.  IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) , 2018, Clinical Neurophysiology.

[28]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[29]  J. Jacobs Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  L. Squire,et al.  Functional Magnetic Resonance Imaging (fMRI) Activity in the Hippocampal Region during Recognition Memory , 2000, The Journal of Neuroscience.

[31]  Justin F. Schneiderman,et al.  Information content with low- vs. high-T c SQUID arrays in MEG recordings: The case for high-T c SQUID-based MEG , 2014, Journal of Neuroscience Methods.

[32]  G. Viana di Prisco,et al.  Theta rhythm of the hippocampus: subcortical control and functional significance. , 2004, Behavioral and cognitive neuroscience reviews.

[33]  Christian F. Doeller,et al.  Lateralized human hippocampal activity predicts navigation based on sequence or place memory , 2010, Proceedings of the National Academy of Sciences.

[34]  C. H. Vanderwolf,et al.  Hippocampal EEG and behavior: changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. , 1973, Behavioral biology.

[35]  Thomas R. Knösche,et al.  A guideline for head volume conductor modeling in EEG and MEG , 2014, NeuroImage.

[36]  K Abraham-Fuchs,et al.  Magnetic source localization and morphological changes in temporal lobe epilepsy: comparison of MEG/EEG, ECoG and volumetric MRI in presurgical evaluation of operated patients , 1994, Acta neurologica Scandinavica. Supplementum.

[37]  Antoni Rodríguez-Fornells,et al.  Studying Memory Encoding to Promote Reliable Engagement of the Medial Temporal Lobe at the Single-Subject Level , 2015, PloS one.

[38]  Robert Oostenveld,et al.  Similarities and differences between on-scalp and conventional in-helmet magnetoencephalography recordings , 2017, PloS one.

[39]  Roshan Cools,et al.  GABAergic Modulation of Visual Gamma and Alpha Oscillations and Its Consequences for Working Memory Performance , 2014, Current Biology.

[40]  Stefan Rampp,et al.  Slow-theta power decreases during item-place encoding predict spatial accuracy of subsequent context recall , 2016, NeuroImage.

[41]  Angelika Königseder,et al.  Walter de Gruyter , 2016 .

[42]  Linda Douw,et al.  Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native MRI for co‐registration , 2017, Human brain mapping.

[43]  Adrian L. Williams,et al.  Task-Related Changes in Cortical Synchronization Are Spatially Coincident with the Hemodynamic Response , 2002, NeuroImage.

[44]  Y. Sitoh,et al.  Neuroimaging in epilepsy , 1998, Journal of magnetic resonance imaging : JMRI.

[45]  Christoph Pfeiffer,et al.  Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps , 2017, Scientific Reports.

[46]  R. Knight,et al.  Insights into Human Behavior from Lesions to the Prefrontal Cortex , 2014, Neuron.

[47]  M. Fuchs,et al.  An improved boundary element method for realistic volume-conductor modeling , 1998, IEEE Transactions on Biomedical Engineering.

[48]  Lily Riggs,et al.  Hippocampal and neocortical oscillatory contributions to visuospatial binding and comparison. , 2013, Journal of experimental psychology. General.

[49]  Neil Burgess,et al.  Medial Prefrontal–Medial Temporal Theta Phase Coupling in Dynamic Spatial Imagery , 2017, Journal of Cognitive Neuroscience.

[50]  E. Halgren,et al.  Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. , 1995, Electroencephalography and clinical neurophysiology.

[51]  Nikolaus Weiskopf,et al.  Flexible head-casts for high spatial precision MEG , 2017, Journal of Neuroscience Methods.

[52]  Niall Holmes,et al.  Moving magnetoencephalography towards real-world applications with a wearable system , 2018, Nature.

[53]  Richard Coppola,et al.  Group differences in MEG-ICA derived resting state networks: Application to major depressive disorder , 2015, NeuroImage.

[54]  Kenneth D Laxer,et al.  Magnetoencephalography source localization and surgical outcome in temporal lobe epilepsy , 2004, Clinical Neurophysiology.

[55]  Matthew J. Brookes,et al.  The relationship between MEG and fMRI , 2014, NeuroImage.

[56]  Xavier Tricoche,et al.  Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling , 2006, NeuroImage.

[57]  M. Taylor,et al.  fMRI and MEG in the study of typical and atypical cognitive development , 2011, Neurophysiologie Clinique/Clinical Neurophysiology.

[58]  Matthew J. Brookes,et al.  On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study , 2016, PloS one.

[59]  Simon Hanslmayr,et al.  Brain oscillations track the formation of episodic memories in the real world , 2016, NeuroImage.

[60]  Lars Nyberg,et al.  Working Memory: Maintenance, Updating, and the Realization of Intentions. , 2016, Cold Spring Harbor perspectives in biology.

[61]  R. Dolan,et al.  Synchronization of Medial Temporal Lobe and Prefrontal Rhythms in Human Decision Making , 2013, The Journal of Neuroscience.

[62]  René J. Huster,et al.  Methods for Simultaneous EEG-fMRI: An Introductory Review , 2012, The Journal of Neuroscience.

[63]  D. Cheyne,et al.  Evaluation of multiple-sphere head models for MEG source localization , 2011, Physics in medicine and biology.

[64]  Rebecca J. Theilmann,et al.  Voxel-wise resting-state MEG source magnitude imaging study reveals neurocircuitry abnormality in active-duty service members and veterans with PTSD , 2014, NeuroImage: Clinical.

[65]  Gabriele Arnulfo,et al.  Phase and amplitude correlations in resting-state activity in human stereotactical EEG recordings , 2015, NeuroImage.

[66]  E. Düzel,et al.  Induced theta oscillations mediate large‐scale synchrony with mediotemporal areas during recollection in humans , 2005, Hippocampus.

[67]  R. Dolan,et al.  Dissecting the Function of Hippocampal Oscillations in a Human Anxiety Model , 2017, The Journal of Neuroscience.

[68]  Giovanni Pellegrino,et al.  Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method , 2018, Human brain mapping.

[69]  R. Kahn,et al.  Oscillatory Cortical Network Involved in Auditory Verbal Hallucinations in Schizophrenia , 2012, PloS one.

[70]  Christian F. Doeller,et al.  Medial prefrontal theta phase coupling during spatial memory retrieval , 2014, Hippocampus.

[71]  Margot J. Taylor,et al.  Functional dissociations in prefrontal–hippocampal working memory systems , 2013, Cortex.

[72]  N. McNaughton,et al.  Frontal-midline theta from the perspective of hippocampal “theta” , 2008, Progress in Neurobiology.

[73]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[74]  M. Bar,et al.  Early onset of neural synchronization in the contextual associations network , 2011, Proceedings of the National Academy of Sciences.

[75]  Paul J. Harrison,et al.  Modulation of hippocampal theta and hippocampal‐prefrontal cortex function by a schizophrenia risk gene , 2015, Human brain mapping.

[76]  Stephen T. C. Wong,et al.  Magnetoencephalography in partial epilepsy: Clinical yield and localization accuracy , 1997, Annals of neurology.

[77]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[78]  Hitten P. Zaveri,et al.  The effect of a scalp reference signal on coherence measurements of intracranial electroencephalograms , 2000, Clinical Neurophysiology.

[79]  Emrah Düzel,et al.  Hippocampal Theta-Phase Modulation of Replay Correlates with Configural-Relational Short-Term Memory Performance , 2011, The Journal of Neuroscience.

[80]  K. Bäuml,et al.  Theta oscillations predict the detrimental effects of memory retrieval , 2010, Cognitive, affective & behavioral neuroscience.

[81]  Matti Stenroos,et al.  Measuring MEG closer to the brain: Performance of on-scalp sensor arrays , 2016, NeuroImage.

[82]  Joerg F. Hipp,et al.  BOLD fMRI Correlation Reflects Frequency-Specific Neuronal Correlation , 2015, Current Biology.

[83]  Hans-Jochen Heinze,et al.  Article Title : Performance-related Increases in Hippocampal N-acetylaspartate (naa) Induced by Spatial Navigation Training Are Restricted to Bdnf Val Homozygotes First Author : Martin Lö Vdé N Article Title : Performance-related Increases in Hippocampal N-acetylaspartate (naa) Induced by Spatial Na , 2022 .

[84]  Wilkin Chau,et al.  An integrative MEG–fMRI study of the primary somatosensory cortex using cross-modal correspondence analysis , 2004, NeuroImage.

[85]  Henri M. Duvernoy The human hippocampus , 1988 .

[86]  W. Freeman,et al.  Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition. , 2009, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[87]  Kareem A. Zaghloul,et al.  Decreases in theta and increases in high frequency activity underlie associative memory encoding , 2015, NeuroImage.

[88]  M. Ota,et al.  Structural differences in hippocampal subfields among schizophrenia patients, major depressive disorder patients, and healthy subjects , 2017, Psychiatry Research: Neuroimaging.

[89]  Arne D. Ekstrom,et al.  Correlation between BOLD fMRI and theta-band local field potentials in the human hippocampal area. , 2009, Journal of neurophysiology.

[90]  M. Elam,et al.  High-T-c superconducting quantum interference device recordings of spontaneous brain activity: Towards high-T-c magnetoencephalography , 2012 .

[91]  Nikolai Axmacher,et al.  Phase-locking within human mediotemporal lobe predicts memory formation , 2008, NeuroImage.

[92]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[93]  M. Elam,et al.  EEG theta rhythm in infants and preschool children , 2006, Clinical Neurophysiology.

[94]  A. Sirota,et al.  The hippocampus: hub of brain network communication for memory , 2011, Trends in Cognitive Sciences.

[95]  Gregory A. Miller,et al.  Bilateral hippocampal dysfunction in schizophrenia , 2011, NeuroImage.

[96]  F. Carver,et al.  A magnetoencephalography spatiotemporal analysis of neural activities during feature binding , 2005, Neuroreport.

[97]  Arne D. Ekstrom,et al.  Human hippocampal theta activity during virtual navigation , 2005, Hippocampus.

[98]  R. Sutherland,et al.  The aging hippocampus: cognitive, biochemical and structural findings. , 2003, Cerebral cortex.

[99]  J. Fell,et al.  Ripples in the medial temporal lobe are relevant for human memory consolidation. , 2008, Brain : a journal of neurology.

[100]  J. Gabrieli,et al.  Medial temporal lobe default mode functioning and hippocampal structure as vulnerability indicators for schizophrenia: A MRI study of non-psychotic adolescent first-degree relatives , 2014, Schizophrenia Research.

[101]  Joshua L. Phillips,et al.  Functional and Neuroanatomic Specificity of Episodic Memory Dysfunction in Schizophrenia: A Functional Magnetic Resonance Imaging Study of the Relational and Item-Specific Encoding Task. , 2015, JAMA psychiatry.

[102]  Christian F. Doeller,et al.  Hippocampal-Prefrontal Theta Oscillations Support Memory Integration , 2016, Current Biology.

[103]  Blake W. Johnson,et al.  Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review , 2018, Front. Neurosci..

[104]  Zeb Kurth-Nelson,et al.  Fast Sequences of Non-spatial State Representations in Humans , 2016, Neuron.

[105]  Margot J. Taylor,et al.  Post-Traumatic Stress Constrains the Dynamic Repertoire of Neural Activity , 2016, The Journal of Neuroscience.

[106]  Karl J. Friston,et al.  Selecting forward models for MEG source-reconstruction using model-evidence , 2009, NeuroImage.

[107]  Rafal Nowak,et al.  Simultaneous Magnetoencephalography and Intracranial EEG Registration: Technical and Clinical Aspects , 2008, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[108]  Natasa Kovacevic,et al.  Semantic information alters neural activation during transverse patterning performance , 2009, NeuroImage.

[109]  Klaus Lehnertz,et al.  Independent Delta/Theta Rhythms in the Human Hippocampus and Entorhinal Cortex , 2008, Frontiers in human neuroscience.

[110]  Lily Riggs,et al.  A complementary analytic approach to examining medial temporal lobe sources using magnetoencephalography , 2009, NeuroImage.

[111]  M. Kahana,et al.  Human hippocampal theta oscillations and the formation of episodic memories , 2012, Hippocampus.

[112]  K Abraham-Fuchs,et al.  The neocortico to mesio-basal limbic propagation of focal epileptic activity during the spike-wave complex. , 1991, Electroencephalography and clinical neurophysiology.

[113]  Nicole M. Long,et al.  Subsequent memory effect in intracranial and scalp EEG , 2014, NeuroImage.

[114]  J. Stephen,et al.  Differentiability of Simulated MEG Hippocampal, Medial Temporal and Neocortical Temporal Epileptic Spike Activity , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[115]  Christian F. Doeller,et al.  Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning , 2012, PLoS biology.

[116]  H. Duvernoy The Human Hippocampus , 1988, J.F. Bergmann-Verlag.

[117]  H. Eichenbaum Memory: Organization and Control. , 2017, Annual review of psychology.

[118]  R. Hari,et al.  Magnetoencephalography: From SQUIDs to neuroscience Neuroimage 20th Anniversary Special Edition , 2012, NeuroImage.

[119]  H. Scheich,et al.  The BOLD Response in the Rat Hippocampus Depends Rather on Local Processing of Signals than on the Input or Output Activity. A Combined Functional MRI and Electrophysiological Study , 2009, The Journal of Neuroscience.

[120]  S. Tobimatsu,et al.  Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: Simultaneous recording of magnetic fields and electrocorticography , 2002, Neurological research.

[121]  Christopher S. Monk,et al.  Human hippocampal activation in the delayed matching- and nonmatching-to-sample memory tasks: an event-related functional MRI approach. , 2002, Behavioral neuroscience.

[122]  Lei Ding,et al.  Integration of EEG/MEG with MRI and fMRI , 2006, IEEE Engineering in Medicine and Biology Magazine.

[123]  Andrew C. Heusser,et al.  Episodic sequence memory is supported by a theta-gamma phase code , 2016, Nature Neuroscience.

[124]  C. Vorhees,et al.  Assessing spatial learning and memory in rodents. , 2014, ILAR journal.

[125]  O. Bertrand,et al.  Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2) , 2013, Epilepsy & Behavior.

[126]  Sylvain Baillet,et al.  How to Detect Amygdala Activity with Magnetoencephalography using Source Imaging , 2013, Journal of visualized experiments : JoVE.

[127]  K. Uutela,et al.  Detecting and Correcting for Head Movements in Neuromagnetic Measurements , 2001, NeuroImage.

[128]  T. Morioka,et al.  Two magneto-encephalographic epileptic foci did not coincide with the electrocorticographic ictal onset zone in a patient with temporal lobe epilepsy , 2001, Neurological research.

[129]  F. Carver,et al.  Human Hippocampal and Parahippocampal Theta during Goal-Directed Spatial Navigation Predicts Performance on a Virtual Morris Water Maze , 2008, The Journal of Neuroscience.

[130]  S. Dalal,et al.  Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2) , 2013, Epilepsy & Behavior.

[131]  M. Wilson,et al.  Theta Rhythms Coordinate Hippocampal–Prefrontal Interactions in a Spatial Memory Task , 2005, PLoS biology.

[132]  C. Grillon,et al.  Spontaneous fast gamma activity in the septal hippocampal region correlates with spatial learning in humans , 2014, Behavioural Brain Research.

[133]  Y. Okada,et al.  Modeling and Detecting Deep Brain Activity with MEG & EEG , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[134]  Karl J. Friston,et al.  Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns , 2016, Proceedings of the National Academy of Sciences.

[135]  C. Binnie,et al.  A glossary of terms most commonly used by clinical electroencephalographers. , 1974, Electroencephalography and clinical neurophysiology.

[136]  M. Souweidane,et al.  Proton magnetic resonance spectroscopy of choroid plexus tumors in children , 2001, Journal of magnetic resonance imaging : JMRI.

[137]  Christian Grillon,et al.  Distinct contributions of human hippocampal theta to spatial cognition and anxiety , 2012, Hippocampus.

[138]  Liberty S. Hamilton,et al.  Hippocampal dysfunction during declarative memory encoding in schizophrenia and effects of genetic liability , 2015, Schizophrenia Research.

[139]  Sandra N. Moses,et al.  Techniques for Detection and Localization of Weak Hippocampal and Medial Frontal Sources Using Beamformers in MEG , 2012, Brain Topography.

[140]  G. B. Frisoni,et al.  Specific EEG Changes Associated with Atrophy of Hippocampus in Subjects with Mild Cognitive Impairment and Alzheimer's Disease , 2012, International journal of Alzheimer's disease.

[141]  Margot J. Taylor,et al.  Resting-state hippocampal connectivity correlates with symptom severity in post-traumatic stress disorder , 2014, NeuroImage: Clinical.

[142]  S. Hanslmayr,et al.  Theta Oscillations at Encoding Mediate the Context-Dependent Nature of Human Episodic Memory , 2013, Current Biology.

[143]  J. Gordon Oscillations and hippocampal–prefrontal synchrony , 2011, Current Opinion in Neurobiology.

[144]  C. H. Vanderwolf,et al.  Hippocampal electrical activity and voluntary movement in the rat. , 1969, Electroencephalography and clinical neurophysiology.

[145]  Richard Coppola,et al.  Abnormal hippocampal functioning and impaired spatial navigation in depressed individuals: evidence from whole-head magnetoencephalography. , 2010, The American journal of psychiatry.

[146]  M. R. Lee,et al.  Magnetic source imaging guidance of gamma knife radiosurgery for the treatment of epilepsy. , 2000, Journal of neurosurgery.

[147]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[148]  B. Ross,et al.  Endogenous Neuromagnetic Activity for Mental Hierarchy of Timing , 2010, The Journal of Neuroscience.

[149]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[150]  Arne D. Ekstrom,et al.  A comparative study of human and rat hippocampal low‐frequency oscillations during spatial navigation , 2013, Hippocampus.

[151]  Krish D. Singh,et al.  Accuracy and applications of group MEG studies using cortical source locations estimated from participants' scalp surfaces , 2003, Human brain mapping.

[152]  E. Halgren,et al.  Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. , 1995, Electroencephalography and clinical neurophysiology.