High-endurance ultra-thin tunnel oxide in MONOS device structure for dynamic memory application

Ultra-thin tunnel oxide can conduct very high current through oxide via direct tunneling, and charge-to-breakdown increases dramatically due to less oxide damage. These facts point to a possibility of using thin tunnel oxide in the floating-gate device structure for dynamic memory applications. We have chosen MONOS structure in this study due to its immunity to pinhole-induced leakage and back-tunneling. The memory device exhibits fast WRITE/ERASE speed, high-endurance, long data retention and non-destructive READ. Further improvements are expected through process optimization.<<ETX>>