Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses

[1]  Yaroslava G. Yingling,et al.  Cellulose synthases: new insights from crystallography and modeling. , 2014, Trends in plant science.

[2]  A. Bacic,et al.  Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes , 2014, BMC Plant Biology.

[3]  S. Hill,et al.  Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls1 , 2013, Plant Physiology.

[4]  M. Jarvis,et al.  Identifying multiple forms of lateral disorder in cellulose fibres , 2013 .

[5]  J. O. Baker,et al.  How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? , 2012, Science.

[6]  V. T. Forsyth,et al.  Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma1[C][W][OA] , 2012, Plant Physiology.

[7]  P. Chang,et al.  Bamboo fiber and its reinforced composites: structure and properties , 2012, Cellulose.

[8]  M. Buckeridge,et al.  Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability , 2012, Cellulose.

[9]  V. T. Forsyth,et al.  Nanostructure of cellulose microfibrils in spruce wood , 2011, Proceedings of the National Academy of Sciences.

[10]  G. Phillips,et al.  Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. , 2011, Journal of the American Chemical Society.

[11]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[12]  R. Serimaa,et al.  Studies on the nanostructure of the cell wall of bamboo using X-ray scattering , 2011, Wood Science and Technology.

[13]  Junji Sugiyama,et al.  Maturation Stress Generation in Poplar Tension Wood Studied by Synchrotron Radiation Microdiffraction[C][W][OA] , 2010, Plant Physiology.

[14]  Chris Somerville,et al.  Cellulosic biofuels. , 2009, Annual review of plant biology.

[15]  G. P. Johnson,et al.  Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Ibeta. , 2008, Biomacromolecules.

[16]  C. Kennedy,et al.  Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence , 2007 .

[17]  David K. Johnson,et al.  Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production , 2007, Science.

[18]  Ping Xu,et al.  Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils , 2007, Wood Science and Technology.

[19]  J. Acker,et al.  Variability in fibre and parenchyma cell walls of temperate and tropical bamboo culms of different ages , 2006, Wood Science and Technology.

[20]  Michael E Himmel,et al.  The maize primary cell wall microfibril: a new model derived from direct visualization. , 2006, Journal of agricultural and food chemistry.

[21]  G. Koch,et al.  A Topocuemical and Semiquantitative Study of The Lignification During Ageing of Bamboo Culms (Phyllostachys Viridiglaucescens) , 2005 .

[22]  J. Sugiyama,et al.  Structural details of crystalline cellulose from higher plants. , 2004, Biomacromolecules.

[23]  J. A. Buso,et al.  BMC Plant Biology , 2003 .

[24]  R. Newman,et al.  Cell wall changes in ripening kiwifruit: 13C solid state NMR characterisation of relatively rigid cell wall polymers , 2002 .

[25]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[26]  R. Murphy,et al.  Microfibril orientation in differentiating and maturing fibre and parenchyma cell walls in culms of bamboo (Phyllostachys viridi-glaucescens (Carr.) Riv. & Riv.) , 2000 .

[27]  R. Newman Estimation of the Relative Proportions of Cellulose I alpha and I beta in Wood by Carbon-13 NMR Spectroscopy , 1999 .

[28]  H. Chanzy,et al.  Suspensions of cellulose microfibrils from sugar beet pulp , 1999 .

[29]  Per Tomas Larsson,et al.  Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy , 1998 .

[30]  P. Kiekens,et al.  Cellulose crystallite sizes in diploid and tetraploid native cotton. , 1998 .

[31]  Peter Fratzl,et al.  The elementary cellulose fibril in Picea abies : comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results , 1995 .