Global optimization of fractional posynomial geometric programming problems under fuzziness

In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems is extended to the proposed problem. In addition, An illustrative example is included to demonstrate the correctness of the proposed solution algorithm.

[1]  Ching-Ter Chang A goal programming approach for fuzzy multiobjective fractional programming problems , 2009, Int. J. Syst. Sci..

[2]  Fengqi You,et al.  Global optimization for sustainable design and synthesis of algae processing network for CO2 mitigation and biofuel production using life cycle optimization , 2014 .

[3]  MAX-MIN CASE,et al.  RECENT DEVELOPMENTS IN FRACTIONAL PROGRAMMING : SINGLE RATIO AND , 2004 .

[4]  Milan Hladík,et al.  Generalized linear fractional programming under interval uncertainty , 2010, Eur. J. Oper. Res..

[5]  C Tofallis,et al.  Fractional Programming: Theory, Methods and Applications , 1997, J. Oper. Res. Soc..

[6]  Y. Almogy,et al.  A Class of Fractional Programming Problems , 1971, Oper. Res..

[7]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[8]  Mashaallah Mashinchi,et al.  An iterative approach to solve multiobjective linear fractional programming problems , 2014 .

[9]  Siegfried Schaible,et al.  Fractional Programming , 2009, Encyclopedia of Optimization.

[10]  S. Zionts,et al.  Programming with linear fractional functionals , 1968 .

[11]  C. Bing-yuan Fuzzy Geometric Programming , 2002 .

[12]  G. S. Mahapatra,et al.  Posynomial Parametric Geometric Programming with Interval Valued Coefficient , 2012, Journal of Optimization Theory and Applications.

[13]  D. Dubois,et al.  Fuzzy real algebra: Some results , 1979 .

[14]  Toshihide Ibaraki,et al.  Fractional knapsack problems , 1977, Math. Program..

[15]  I. Stancu-Minasian Nonlinear Fractional Programming , 1997 .

[16]  Yves Pochet,et al.  A tighter continuous time formulation for the cyclic scheduling of a mixed plant , 2008, Comput. Chem. Eng..

[17]  S. Schaible,et al.  An algorithm for generalized fractional programs , 1985 .

[18]  N. Gadhi,et al.  Fuzzy Optimality Conditions for Fractional Multiobjective Bilevel Problems Under Fractional Constraints , 2011 .

[19]  Bing-yuan Cao,et al.  Properties and Algorithms for Fuzzy Geometric Programming , 2012 .

[20]  Christiane Tammer,et al.  Multicriterial Fractional Optimization , 1996 .

[21]  Christopher C. Skiscim,et al.  Minimum Spanning Trees with Sums of Ratios , 2001, J. Glob. Optim..

[22]  R. Jagannathan On Some Properties of Programming Problems in Parametric form Pertaining to Fractional Programming , 1966 .

[23]  Siegfried Schaible,et al.  Handbook of Generalized Convexity and Generalized Monotonicity , 2005 .

[24]  Bogdana Stanojevic,et al.  A note on 'Taylor series approach to fuzzy multiple objective linear fractional programming' , 2013, Inf. Sci..