EfficientO(N2)method to solve the Bethe-Salpeter equation

We present a numerically efficient approach to solve the Bethe-Salpeter equation for the polarization function. Rather than from the usual eigenvalue representation, the macroscopic polarizability is obtained from the solution of an initial-value problem. This reduces the computational effort considerably and allows for calculating excitonic and local-field effects in optical spectra of complex systems consisting of many atoms. As an example we investigate the optical anisotropy of the monohydride Si(001)(2×1) surface. While excitonic effects influence the surface optical properties considerably, the local-field effect induced changes are minimal.

[1]  Eric L. Shirley,et al.  Optical Absorption of Insulators and the Electron-Hole Interaction: An Ab Initio Calculation , 1998 .

[2]  Barrera,et al.  Intrinsic surface-induced optical anisotropies of cubic crystals: Local-field effect. , 1985, Physical review letters.

[3]  R. Shioda,et al.  Observation of hydrogen adsorption on Si(001) by reflectance difference spectroscopy , 1998 .

[4]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[5]  Cardona,et al.  Temperature dependence of the dielectric function and interband critical points in silicon. , 1987, Physical review. B, Condensed matter.

[6]  F. Bechstedt,et al.  Bulk excitonic effects in surface optical spectra. , 2001, Physical review letters.

[7]  Friedhelm Bechstedt,et al.  Terrace and step contributions to the optical anisotropy of Si(001) surfaces , 2001 .

[8]  B. Santo,et al.  Solid State , 2012 .

[9]  David E. Aspnes,et al.  Real-time optical analysis and control of semiconductor epitaxy: Progress and opportunity , 1997 .

[10]  COMMENT ON: AB INITIO CALCULATION OF EXCITONIC EFFECTS IN THE OPTICAL SPECTRA OF SEMICONDUCTORS. AUTHORS' REPLY , 1999 .

[11]  W. Richter,et al.  Hydrogen-terminated Si(100) surfaces investigated by reflectance anisotropy spectroscopy , 1993 .

[12]  L. J. Sham,et al.  Many-Particle Derivation of the Effective-Mass Equation for the Wannier Exciton , 1966 .

[13]  C. Mendoza,et al.  Energy loss of electrons traveling parallel to the interface of a semi-infinite granular composite , 1998 .

[14]  Steven G. Louie,et al.  Excitons and Optical Spectrum of the Si ( 111 ) − ( 2 × 1 ) Surface , 1999 .

[15]  U. Sandler,et al.  Phase transitions in fiber materials , 2000 .

[16]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[17]  L. Reining,et al.  Excitonic effects on the silicon plasmon resonance. , 2001, Physical review letters.

[18]  Werner Hanke,et al.  Many-particle effects in the optical spectrum of a semiconductor , 1980 .

[19]  L. Benedict,et al.  Theory of optical absorption in diamond, Si, Ge, and GaAs , 1998 .

[20]  J. Fattebert,et al.  Large-Scale Applications of Real-Space Multigrid Methods to Surfaces, Nanotubes, and Quantum Transport , 2000 .

[21]  Albrechtet al.Reply , 1999 .

[22]  Steven G. Louie,et al.  Excitonic Effects and the Optical Absorption Spectrum of Hydrogenated Si Clusters , 1998 .

[23]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[24]  Eric L. Shirley,et al.  Ab initio calculation of ε 2 ( ω ) including the electron-hole interaction: Application to GaN and CaF 2 , 1999 .

[25]  Lucia Reining,et al.  An efficient method for calculating quasiparticle energies in semiconductors , 1992 .

[26]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[27]  F. Bechstedt,et al.  GaAs(001): Surface Structure and Optical Properties , 2001 .

[28]  W. Schmidt,et al.  Step-induced optical anisotropy of Si(111):H surfaces , 2000 .

[29]  D. Weaire,et al.  New applications of the equation-of-motion method: Optical properties , 1993 .

[30]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[31]  A. Selloni,et al.  Anisotropy of surface optical properties from first-principles calculations. , 1990, Physical review. B, Condensed matter.

[32]  G. Strinati Application of the Green’s functions method to the study of the optical properties of semiconductors , 1988 .

[33]  M. Rohlfing,et al.  Structural and optical properties of the Ge(111)-(2 x 1) surface. , 2000, Physical review letters.

[34]  Louie,et al.  Model dielectric matrices for quasiparticle self-energy calculations. , 1988, Physical review. B, Condensed matter.

[35]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[36]  R. del Sole,et al.  Microscopic theory of optical properties of crystal surfaces , 1981 .

[37]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[38]  Chemla,et al.  Numerical calculation of the optical absorption in semiconductor quantum structures. , 1996, Physical review. B, Condensed matter.

[39]  J. Fattebert,et al.  SELF-ENERGY EFFECTS IN THE OPTICAL ANISOTROPY OF GaP(001) , 1999 .

[40]  Cappellini,et al.  Model dielectric function for semiconductors. , 1993, Physical review. B, Condensed matter.

[41]  R. Kosloff Time-dependent quantum-mechanical methods for molecular dynamics , 1988 .

[42]  M. L. Cohen,et al.  High accuracy many-body calculational approaches for excitations in molecules. , 2000, Physical review letters.