Cortical inhibitory neurons and schizophrenia

Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia. Convergent findings indicate that a deficiency in signalling through the TrkB neurotrophin receptor leads to reduced GABA (γ-aminobutyric acid) synthesis in the parvalbumin-containing subpopulation of inhibitory GABA neurons in the dorsolateral prefrontal cortex of individuals with schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting alteration in perisomatic inhibition of pyramidal neurons contributes to a diminished capacity for the gamma-frequency synchronized neuronal activity that is required for working memory function. These findings reveal specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.

[1]  P. Somogyi A specific ‘axo-axonal’ interneuron in the visual cortex of the rat , 1977, Brain Research.

[2]  Sze Py L-Glutamate decarboxylase. , 1979 .

[3]  G. Fischer,et al.  [Psychiatry in the press]. , 1983, Das Offentliche Gesundheitswesen.

[4]  D. Weinberger,et al.  Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. , 1986, Archives of general psychiatry.

[5]  T. C. Wang,et al.  Postnatal changes in enzyme activities of rat myocardial adenine nucleotide catabolic pathway. , 1987, Life sciences.

[6]  C. Tanaka,et al.  [3H]muscimol binding sites increased in autopsied brains of chronic schizophrenics. , 1987, Life sciences.

[7]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[8]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[9]  P. Seeburg,et al.  Structural and functional basis for GABAA receptor heterogeneity , 1988, Nature.

[10]  J. Lund,et al.  Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin‐releasing factor‐and parvalbumin‐immunoreactive populations , 1990, The Journal of comparative neurology.

[11]  I. Gottesman Schizophrenia Genesis: The Origins of Madness , 1990 .

[12]  F. Vogel,et al.  Schizophrenia genesis: The origins of madness , 1991 .

[13]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[14]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[15]  P S Goldman-Rakic,et al.  Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Gur,et al.  Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. , 1994, Archives of general psychiatry.

[17]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  S. Akbarian,et al.  GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. , 1995, Cerebral cortex.

[19]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[20]  J. Fritschy,et al.  GABAA‐receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits , 1995, The Journal of comparative neurology.

[21]  E. G. Jones,et al.  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. , 1995, Archives of general psychiatry.

[22]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[23]  P. Somogyi,et al.  Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  F. Benes,et al.  Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects , 1996, Neuroscience.

[25]  G Tedeschi,et al.  Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. , 1996, The American journal of psychiatry.

[26]  A. Cellerino,et al.  The Distribution of Brain‐derived Neurotrophic Factor and its Receptor trkB in Parvlbumin‐containing Neurons of the Rat Visual Cortex , 1996, The European journal of neuroscience.

[27]  Michael F. Green,et al.  What are the functional consequences of neurocognitive deficits in schizophrenia? , 1996, The American journal of psychiatry.

[28]  T. Yagi,et al.  Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. , 1996, Biochemical and biophysical research communications.

[29]  P. Somogyi,et al.  Differential synaptic localization of two major y-aminobutyric acid type A receptor a subunits on hippocampal pyramidal cells , 1996 .

[30]  T. Yagi,et al.  Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Kondo,et al.  Combinations of AMPA Receptor Subunit Expression in Individual Cortical Neurons Correlate with Expression of Specific Calcium-Binding Proteins , 1997, The Journal of Neuroscience.

[32]  N L Harrison,et al.  Activation and deactivation rates of recombinant GABA(A) receptor channels are dependent on alpha-subunit isoform. , 1997, Biophysical journal.

[33]  T. Woo,et al.  Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. , 1997, The American journal of psychiatry.

[34]  Paul J. Harrison Schizophrenia: a disorder of neurodevelopment? , 1997, Current Opinion in Neurobiology.

[35]  Yogesh K. Dwivedi,et al.  A decrease of reelin expression as a putative vulnerability factor in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[37]  S. Hirsch,et al.  Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia , 1998, Journal of neurology, neurosurgery, and psychiatry.

[38]  F. Benes,et al.  A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives , 1998, Biological Psychiatry.

[39]  T. Woo,et al.  A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Guidotti,et al.  Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Aguzzi,et al.  A Highly Sensitive Immunofluorescence Procedure for Analyzing the Subcellular Distribution of GABAA Receptor Subunits in the Human Brain , 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[42]  Y. Kubota,et al.  Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex , 1998, Neuroscience.

[43]  J. Pernier,et al.  Induced gamma-band activity during the delay of a visual short-term memory task in humans. , 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  S. Sesack,et al.  Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. , 1998, Cerebral cortex.

[45]  L. Maffei,et al.  BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex , 1999, Cell.

[46]  J. Pierri,et al.  Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. , 1999, The American journal of psychiatry.

[47]  P. McKenna,et al.  Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor α-1 subunit messenger RNA and human GABA transporter-1 (hGAT-1) messenger RNA expression , 1999, Neuroscience.

[48]  D. Lewis,et al.  Parvalbumin‐immunoreactive axon terminals in macaque monkey and human prefrontal cortex: Laminar, regional, and target specificity of type I and type II synapses , 1999, The Journal of comparative neurology.

[49]  A. Guidotti,et al.  Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A Reichenberg,et al.  Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. , 1999, The American journal of psychiatry.

[51]  R. Buchanan,et al.  Diazepam treatment of early signs of exacerbation in schizophrenia. , 1999, The American journal of psychiatry.

[52]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[53]  T. Rülicke,et al.  Molecular and neuronal substrate for the selective attenuation of anxiety. , 2000, Science.

[54]  P. Goldman-Rakic,et al.  Destruction and Creation of Spatial Tuning by Disinhibition: GABAA Blockade of Prefrontal Cortical Neurons Engaged by Working Memory , 2000, The Journal of Neuroscience.

[55]  R. Nicoll,et al.  The Role of Brain-Derived Neurotrophic Factor Receptors in the Mature Hippocampus: Modulation of Long-Term Potentiation through a Presynaptic Mechanism involving TrkB , 2000, The Journal of Neuroscience.

[56]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[57]  Pat Levitt,et al.  Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex , 2000, Neuron.

[58]  Mark E. Williams,et al.  Glutamate decarboxylase65-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain , 2000, Journal of Chemical Neuroanatomy.

[59]  T. Goldberg,et al.  Cognitive impairment in schizophrenia is the core of the disorder. , 2000, Critical reviews in neurobiology.

[60]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[61]  David A Lewis,et al.  Catching Up on Schizophrenia Natural History and Neurobiology , 2000, Neuron.

[62]  Daniel R Weinberger,et al.  To Model a Psychiatric Disorder in Animals: Schizophrenia As a Reality Test , 2000, Neuropsychopharmacology.

[63]  Yogesh K. Dwivedi,et al.  Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. , 2000, Archives of general psychiatry.

[64]  E. Costa,et al.  Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Cohen,et al.  Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. , 2001, The American journal of psychiatry.

[66]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[67]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[68]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[69]  A. Sampson,et al.  GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. , 2001, The American journal of psychiatry.

[70]  J. Pierri,et al.  Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. , 2001, The American journal of psychiatry.

[71]  German Barrionuevo,et al.  Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex , 2001, The Journal of comparative neurology.

[72]  B. Pakkenberg,et al.  No deficit in total number of neurons in the prefrontal cortex in schizophrenics. , 2001, Journal of psychiatric research.

[73]  F. Benes,et al.  GABAergic Interneurons: Implications for Understanding Schizophrenia and Bipolar Disorder , 2001, Neuropsychopharmacology.

[74]  A. Sampson,et al.  Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. , 2002, Cerebral cortex.

[75]  A. Diamond Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. , 2002 .

[76]  J John Mann,et al.  The GABAergic system in schizophrenia. , 2002, The international journal of neuropsychopharmacology.

[77]  J J Bartko,et al.  Molecular abnormalities in the major psychiatric illnesses: Classification and Regression Tree (CRT) analysis of post-mortem prefrontal markers , 2002, Molecular Psychiatry.

[78]  D. Stuss,et al.  Principles of frontal lobe function , 2002 .

[79]  Daniel R Weinberger,et al.  Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study , 2002, Schizophrenia Research.

[80]  M. Yamada,et al.  Brain-Derived Neurotrophic Factor Promotes the Maturation of GABAergic Mechanisms in Cultured Hippocampal Neurons , 2002, The Journal of Neuroscience.

[81]  D. Lewis,et al.  Postnatal development of parvalbumin‐ and GABA transporter‐immunoreactive axon terminals in monkey prefrontal cortex , 2002, The Journal of comparative neurology.

[82]  F. Benes,et al.  Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. , 2002, Archives of general psychiatry.

[83]  P. Goldman-Rakic,et al.  A role for inhibition in shaping the temporal flow of information in prefrontal cortex , 2002, Nature Neuroscience.

[84]  C. Beasley,et al.  Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins , 2002, Biological Psychiatry.

[85]  C. Beasley,et al.  The density and spatial distribution of gabaergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia , 2002, Biological Psychiatry.

[86]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[87]  S. Eggan,et al.  Postnatal development of pre‐ and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex , 2003, The Journal of comparative neurology.

[88]  R. McCarley,et al.  Abnormal Neural Synchrony in Schizophrenia , 2003, The Journal of Neuroscience.

[89]  M. Egan,et al.  Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. , 2003, The American journal of psychiatry.

[90]  M. Vreugdenhil,et al.  Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. , 2003, Journal of neurophysiology.

[91]  David A Lewis,et al.  Pyramidal neuron local axon terminals in monkey prefrontal cortex: differential targeting of subclasses of GABA neurons. , 2003, Cerebral cortex.

[92]  J. Kleinman,et al.  Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia , 2003, Molecular Psychiatry.

[93]  Zin Z. Khaing,et al.  Gene expression in dopamine and GABA systems in an animal model of schizophrenia: effects of antipsychotic drugs , 2003, The European journal of neuroscience.

[94]  J. Pierri,et al.  Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. , 2003, Annals of the New York Academy of Sciences.

[95]  G. Westbrook,et al.  Synapse Density Regulates Independence at Unitary Inhibitory Synapses , 2003, The Journal of Neuroscience.

[96]  D. Goff,et al.  Converging Evidence of NMDA Receptor Hypofunction in the Pathophysiology of Schizophrenia , 2003, Annals of the New York Academy of Sciences.

[97]  M. Whittington,et al.  A Novel Network of Multipolar Bursting Interneurons Generates Theta Frequency Oscillations in Neocortex , 2003, Neuron.

[98]  D. Lewis,et al.  Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction , 2004, Psychopharmacology.

[99]  H. Lester,et al.  GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. , 2003, Journal of neurophysiology.

[100]  Bita Moghaddam,et al.  Bringing Order to the Glutamate Chaos in Schizophrenia , 2003, Neuron.

[101]  R. Gur,et al.  Working memory deficit as a core neuropsychological dysfunction in schizophrenia. , 2003, The American journal of psychiatry.

[102]  K. Jellinger Principles of frontal lobe function , 2003 .

[103]  D. Barch,et al.  Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression , 2003, Biological Psychiatry.

[104]  A. Sampson,et al.  Somal size of prefrontal cortical pyramidal neurons in schizophrenia differential effects across neuronal subpopulations , 2003, Biological Psychiatry.

[105]  J. Pierri,et al.  Altered Cortical Glutamate Neurotransmission in Schizophrenia , 2003 .

[106]  D. Volk,et al.  Effects of a mediodorsal thalamus lesion on prefrontal inhibitory circuitry: implications for schizophrenia , 2003, Biological Psychiatry.

[107]  Marc W Howard,et al.  Gamma oscillations correlate with working memory load in humans. , 2003, Cerebral cortex.

[108]  René S. Kahn,et al.  Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis , 2004, Schizophrenia Research.

[109]  M C O'Donovan,et al.  The molecular genetics of schizophrenia: new findings promise new insights , 2004, Molecular Psychiatry.

[110]  R. McCarley,et al.  Neural synchrony indexes disordered perception and cognition in schizophrenia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  T. Sawaguchi,et al.  Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys , 2004, Experimental Brain Research.

[112]  E. Azmitia,et al.  Serotonin1A receptors at the axon initial segment of prefrontal pyramidal neurons in schizophrenia. , 2004, The American journal of psychiatry.

[113]  I. Módy,et al.  Diversity of inhibitory neurotransmission through GABAA receptors , 2004, Trends in Neurosciences.

[114]  M. Barrot,et al.  Essential role of brain-derived neurotrophic factor in adult hippocampal function. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[115]  T. Woo,et al.  Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. , 2004, Archives of general psychiatry.

[116]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[117]  A. Sampson,et al.  Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: Volume, neuron number, and cell types , 2004, The Journal of comparative neurology.

[118]  D. Weinberger,et al.  Genes, dopamine and cortical signal-to-noise ratio in schizophrenia , 2004, Trends in Neurosciences.

[119]  A. Addington,et al.  GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss , 2005, Molecular Psychiatry.

[120]  Jonathan D. Cohen,et al.  Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. , 2005, American Journal of Psychiatry.

[121]  D. Melchitzky,et al.  Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex , 2005, Neuroscience.

[122]  A. Zaitsev,et al.  Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. , 2005, Cerebral cortex.

[123]  A. Sampson,et al.  Relationship of Brain-Derived Neurotrophic Factor and Its Receptor TrkB to Altered Inhibitory Prefrontal Circuitry in Schizophrenia , 2005, The Journal of Neuroscience.

[124]  B. Morris,et al.  PCP: from pharmacology to modelling schizophrenia. , 2005, Current opinion in pharmacology.

[125]  David A Lewis,et al.  Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.